News about the Binomial Formula

Take a look at

$$
\begin{array}{llll}
X & X & X & Y \\
X & X & X & Y \\
X & X & X & Y \\
Y & Y & Y & Y
\end{array}
$$

that is

$$
4 \cdot 4=3 \cdot 3+4+3
$$

You can generalize

$$
(a+1)^{2}=a^{2}+(a+1)+a
$$

You get this as you start from the inner square and go along the edges.

With the known formula

$$
(a+1)^{3}=a^{3}+3 \cdot a^{2}+3 \cdot a+1
$$

and the approach

$$
\begin{aligned}
(a+1)^{3} & =a^{3}+(a+1)^{2}+x+a^{2}= \\
& =a^{3}+a^{2}+2 \cdot a+1+a^{2}+x= \\
& =a^{3}+2 \cdot a^{2}+2 \cdot a+1+x
\end{aligned}
$$

you get the following equation

$$
x=a^{2}+a=a \cdot(a+1)
$$

So you come to the conjecture

$$
\forall \mathrm{n} \in \mathbb{N}_{+}(a+1)^{\mathrm{n}}=a^{\mathrm{n}}+\sum_{i=0}^{\mathrm{n}-1} a^{i}(a+1)^{\mathrm{n}-1-i}
$$

Pre.: Let \mathfrak{R} be a ring with identity unit 1.

Ass.:

$$
\forall n \in \mathbb{N}_{+} \underbrace{\forall a \in \mathfrak{R} \quad(a+1)^{n}=a^{n}+\sum_{i=0}^{n-1} a^{i}(a+1)^{n-1-i}}
$$

Rem. 1 Because \mathfrak{R} is a ring with identity unit 1 , the following is true:

$$
\forall \mathrm{n} \in \mathbb{N}_{+} \quad \forall a \in \mathfrak{R} \quad(a+1) \cdot a^{\mathrm{n}}=a^{\mathrm{n}+1}+a^{\mathrm{n}}=a^{\mathrm{n}} \cdot(a+1)
$$

Rem. 2 With the same premise you get

$$
\forall n \in \mathbb{N}_{+} \quad \forall a \in \mathfrak{R} \quad(a-1)^{n}=a^{n}-\sum_{i=0}^{n-1} a^{i}(a-1)^{n-1-i}
$$

Proof.: With the method of complete induction:
The basis of the induction $A(1)$ is trivial.
Let $k \in \mathbb{N}_{+}$and assume $A(k)$. Then the following has to be shown:
$\forall a \in \mathfrak{R} \quad(a+1)^{k+1}=a^{k+1}+\sum_{i=0}^{k} a^{i}(a+1)^{k-i}$
Proof of this:

Let $a \in \mathfrak{R}$. With $A(k)$ you get the following:

$$
\begin{aligned}
(a+1)^{k+1} & =(a+1) \cdot(a+1)^{k}= \\
& =(a+1) \cdot\left(a^{k}+\sum_{i=0}^{k-1} a^{i} \cdot(a+1)^{k-1-i}\right)= \\
& =(a+1) \cdot a^{k}+(a+1) \cdot \sum_{i=0}^{k-1} a^{i} \cdot(a+1)^{k-1-i}= \\
& =a^{k+1}+a^{k}+\sum_{i=0}^{k-1} a^{i} \cdot(a+1)^{k-i}= \\
& =a^{k+1}+a^{k} \cdot(a+1)^{0}+\sum_{i=0}^{k-1} a^{i} \cdot(a+1)^{k-i}= \\
& =a^{k+1}+\sum_{i=0}^{k} a^{i} \cdot(a+1)^{k-i}
\end{aligned}
$$

Thus $A(k+1)$ is proved.

