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1. HowTo CoronaCalculator.xlsm 
 
1. 
 

Download “CoronaCalculator.zip”. 
 

2. 
 

Unzip “CoronaCalculator.zip”. It contains “CoronaCalcula-
tor.xlsm”. 
 

3. 
 

Open “CoronaCalculator.xlsm” with MS EXCEL. 
 

4. 
 

Look at the Menu Bar and locate the entry “Corona”. 
 

5. 
 

Choose this entry. Now you see 2 buttons: 
 
    “Drop Charts” 
    “Corona Prognosis” 
 

6. 
 

Choose “Corona Prognosis”. Now you see a dialog. It con-
tains 5 textboxes with labels: 
 
    “Incubation Period (in days)” 
 
    “r-Value Before (per day)” 
    “r-Value Target (per day)” 
 
    “lost (in days)” 
 
    “Infected Humans (at zero)” 
 

7. 
 

The textbox with label “Incubation Period (in days)” 
allows integers >= 1. It contains the time for incuba-
tion. 
 

8. 
 

The textbox with label “r-Value Before (per day)” allows 
floats > 0. It contains the r-Value before the new 
Corona-Strategy. 
 

9. 
 

The textbox with label “r-Value Target (per day)” allows 
floats > 0. It contains the intended r-Value for the new 
Corona-Strategy. 
 

10. 
 

The textbox with label “lost (in days)” allows integers 
>= 0. It contains the lost time before the new Corona-
Strategy is applied. 
 

11. 
 

The textbox with label “Infected Humans (at zero)” allows 
integers >= 0. It contains the number of infected humans 
at time zero. 
 

12. 
 

Enter the values and press “Plot”. 
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2. Data Description 
 
The “CoronaCalculator.xlsm” contains 5 sheets: 
 
1. 
 

The sheet “r-Values” contains the transition a r-Value to 
another r-Value. 
 

2. 
 

The sheet “Infect Rate” contains the evolution of the in-
fect rate for a year. It is caused by the evolution of 
the r-Value. 
 

3. 
 

The sheet “Detail lost” is the detailed view of the in-
fect rate for (2 * lost) days 
 

4. 
 

The sheet “Detail Effect” is the detailed view of the in-
fect rate for (2 * (lost + Incubation Period)) days. 
 

5. 
 

The sheet “Infections” contains the evolution of infected 
humans for a year. There you can see the total effect of 
the new Corona-Strategy. 
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3. The IVP 
 
Let I  be an interval of  with I ≠ ∅. 
Let Iξ ∈ . 
Let η ∈ . 
The IVP, that describes infections, is well known. It is: 
 

    
( ) ( ) ( )
( )

y x x y x

y

α
ξ η

′ =

=
 

    with a given continuous function : Iα →  
 
It is a linear ODE. The solution of this IVP is also well 
known and can be found in “Walter, Gewöhnliche Differential-
gleichungen, Springer-Verlag, ISBN 3-540-16143-0”. 
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4. The Simplest IVP 
 
The most simplest approach to a concret infection is the as-
sumption: 
 
    ( )xα  is constant with a value c ∈  
 
Then the IVP has a very simple solution. It is: 
 

    ( ) ( )c xy x e ξη ⋅ −= ⋅  
 
In the case of 0η ≠  we can define the so-called r-Value of 
the IVP. It is: 
 

    
( )
( )

( )
( )

11
: 0

0

cy e c
cy e

ξ

ξ

⋅ −
= = =

⋅ −
r e  >

 
i.e. 
 
    ( )ln=c r  
 
If two different IVPs of the simplest kind have the same r-
Value, then the xy-Charts of the solutions of these IVPs only 
differ in the scalings of the Axes. 
 
For example, the simplest IVP describes the evolution of a 
bacteria culture quite well. 
 
Cave!: There are physically limits for this model: 
 
1. 
 

Someday earth is consumed. 
 

2. 
 

Someday the spatial spreading of cell division exceeds 
the speed of light. 
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5. A More Complicated IVP (V1) 
 
Let ,ξ η ∈ . 
Let ,γ δ ∈  with 0δ ≠ . 
We define the function :α →  through 
 
    ( ) ( )x xα γ δ ξ= + ⋅ −  
 
We the define another function :β →  through 
 

    ( ) ( ) ( )1 2
2

x x xβ γ ξ δ= ⋅ − + ⋅ ⋅ − ξ  

 
Then we have: 
 

    :α →  and :β →  are C∞  
    :β →  is an antiderivative of :α →  
    ( ) 0β ξ =  
 
The IVP 
 

    
( ) ( ) ( )
( )

y x x y x

y

α
ξ η

′ =

=
 

 
has the solution: 
 

    ( ) ( )xy x eβη= ⋅  
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6. A More Complicated IVP (V2) 
 
Let γ ∈  with 0γ > . 
Let δ ∈  with 0δ ≠ . 
Let ξ ∈ . 
Let η ∈ . 

We define an interval : ;I γ γξ ξ
δ δ

 
= − + 

 
. 

 
We define the function : Iα →  through 
 
    ( ) ( )( )lnx xα γ δ ξ= + ⋅ −  
 
With “Bronstein, Semendjajew, Taschenbuch der Mathematik, Ver-
lag Harri Deutsch, ISBN 3-871-44492-8” we have: 
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( ) ( )
( )

( )
( )

( )

ln 1

ln ln 1

1ln 1
1

11
ln

1

x x

x

i
x

i
ii

i
i

ix
ii

δα γ ξ
γ

δγ ξ
γ

δ ξ
γ

γ

δ
γ

γ ξ

  
= ⋅ + ⋅ − =  

  
 

= + + ⋅ − = 
 

 
⋅ − ∞  += + − ⋅∑

=

 +− ⋅  ∞  = + ⋅ −∑
=

=
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We can now define another function : Iβ →  through 
 

    ( ) ( ) ( )
( )

( )
( )

11
1ln

11

i
i

ix x x
i ii

δ
γ

β γ ξ

 +− ⋅  ∞   += ⋅ − + ⋅ −∑
⋅ +

ξ
=

 

 
Then we have obviously: 
 

    : Iα →  and : Iβ →  are C∞  
    : Iβ →  is an antiderivative of : Iα →  
    ( ) 0β ξ =  
 
The IVP 
 

    
( ) ( ) ( )
( )

y x x y x

y

α
ξ η

′ =

=
 

 
has the solution: 
 

    ( ) ( )xy x eβη= ⋅  
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7. A Real IVP (V1): 
   Transition Of r-Values 
 
Let r r . ,1 2 ∈ +
Let x x  with 0 . ,1 2 ∈ 1 2x x≤ <

We define c c  through ,1 2 ∈
 

    c r  ( ): ln1 1=

    c r  ( ): ln2 2=

 
We define the function :α →  through 
 

    ( ) ( )
                                  1 1

1:             1 2 1 1
2 1

                                  2 2

c x

x x
x c c c x x

x x

c x

α

 ≤


−
= + ⋅ − ≤ ≤ −

 ≤

2

x

x

x

 

 
Knowing 4. and 5. we can solve the associated IVP. 

 9



8. A Real IVP (V2): 
   Transition Of r-Values 
 
Let r r  with r  and r r,1 2 ∈ + 1 ≠ 22 1< ⋅ . 2
Let x x  with 0 . ,1 2 ∈ 1 2x x≤ <

r

We define c c  through ,1 2 ∈
 

    c r  ( ): ln1 1=

    c r  ( ): ln2 2=

 
We define the function :α →  through 
 

    ( ) ( )

                                  1 1

1: ln         1 2 1 1
2 1

                                  2 2

c x

x x
x r r r x x

x x

c x

α

≤


 −  = + ⋅ − ≤ ≤  −  
 ≤

2

x

x

x

 

 
We define γ ∈ +  and δ ∈  with 0δ ≠  through 

 
    : 01rγ = >  

    2 1: 0
2 1

r r

x x
δ

−
= ≠

−
 

 
We examine the function :α → . We set ξ ∈  and I  as ⊆
 
    : 1xξ =  

    : ;I γ γξ ξ
δ δ

 
= − + 
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Then we have: 
 
    x I1 ξ= ∈  

    2 1 0
2

r r

x
δ

ξ

−
= ≠

−
 

     ( ) ( )( )
                                1

ln                 2
                                2 2

c x

x x

c x

ξ

α γ δ ξ ξ

 ≤
= + ⋅ − ≤ ≤
 ≤

x x

x

 
We want to apply 6. So we must show: 
 
    x I  2 ∈
 
Proof of that: 
 

    

  2

  2

  2

2 2
1 2 1

2 1 2 1

x I

x

x

x x
r x r

r r r r

γ γξ ξ
δ δ

γ γξ
δ δ

ξ ξ
ξ

∈ ⇔

− < < + ⇔

− < − < ⇔

− −
− ⋅ < − < ⋅

− −
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Because of x x2 1 ξ> =  and r , we get: 01 >
 

    

  2

2   2 1
2 1

1
1

2 1

  2 1 1
  1 2 1 1

0 22 1

x I

x
x r

r r

r
r r

r r r

r r r r

r r

ξ
ξ

∈ ⇔

−
− < ⋅ ⇔

−

< ⋅ ⇔
−

− < ⇔

− < − < ⇔

< < ⋅

1    

 
Because of r r , we get: ,1 2 ∈ +
 
    x I      22 2r∈ ⇔ < ⋅ 1r

I
 
Because I  is an interval of  and x x,1 2 ∈ , it follows: 

 

     ;1 2x x I  ⊆ 
 
Knowing 4. and 6. we can solve the associated IVP. 
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9. More About The r-Value 
 

9.1. Interpretation 
 
The r-Value compares per definitionem the states of the infect 
between the times 1 and 0. 
 
For example: 
 
A value of 1.14 for the r-Value of the IVP means that 100 
humans in average infect 114 another humans in the time from 0 
until 1. The r-Value is dependent from the time unit you use. 
 
 
 

9.2. Conversion of the r-Value 
     from “per day” to “per week” 
 
We have: 
 

    r r  ( )7:W D=

 
 
 

9.3. Conversion of the r-Value 
     from “per week” to “per day” 
 
We have: 
 

    ( )
1
7

7: rD W w= =r r  

 
 
 

9.4. Remark 
 
There are several definitions of the r-Value out there. The r-
Value, which is used here, originates from my education. 
 
If you compute an average r-Value, you must use the geometric 
average. 
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10. Incubation Period 
 
There are sevaral possibilities for the Incubation Period. 
Please experiments with it: 
 
1. 
 

The average Incubation Period is - as far as I googled –
circa 7 days. 
 
So you can try 7 days. 
 

2. 
 

The average Incubation Period is the time, when half the 
infections are broken out. 
 
So you can try 14 = 2 * 7 days. 
 

3. 
 

The maximal Incubation Period is – as far as I googled –
circa 12 Day. 
 
So you can try 12 days. 
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11. Total Infections 
 
To compute the number of total infections from time 0, you 
must integrate the solution of the real IVP. 
 
In the case of x  or x1x≤ 2 x≤  you can find an antiderivative 

in “Bronstein, Semendjajew, Taschenbuch der Mathematik, Verlag 
Harri Deutsch, ISBN 3-871-44492-8” 
 
In the case 1x x 2x≤ ≤  you must compute an antiderivative nu-

merically. The algorithm can be found in “Stoer, Bulirsch, Nu-
merische Mathematik 2, Springer-Lehrbuch, ISBN 3-540-51482-1”. 
It is called “Euler’s Polygonal Method”. 
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