A

Striking Proof

The Problem:

I found the striking proof in "Karl Heinz Mayer, Algebraische Topologie, Birkhäuser Verlag (Basel), ISBN 3-7643-2229-2, 6.7 (page 59)".

It contains a double assumption (in series, not parallel). I feel sick about it. I don't know how to finish the proof. Perhaps it is not allowed at all to do it this way.

It is no problem to prove the thesis of the theorem. It is simple.

The problem is the method of double assumption.

The Simple Proof:

Theo.

```
Pre. Let X be a topological space.
    Let A a connected subset of X.
Ass. }\forallB\subseteqX\quad(A\subseteqB\subseteq\overline{A}\quad=>\quad(B\mathrm{ is connected ))
Proof: Let B\subseteqX with A\subseteqB\subseteq\overline{A}.
    Let }\mp@subsup{U}{1}{},\mp@subsup{U}{2}{}\in\operatorname{Top}(X)\mathrm{ with
\[
\begin{aligned}
& B=\left(U_{1} \cap B\right) \cup\left(U_{2} \cap B\right) \\
& \varnothing=\left(U_{1} \cap B\right) \cap\left(U_{2} \cap B\right)
\end{aligned}
\]
Because \(A \subseteq B\), the following is true:
\[
\begin{aligned}
& A=\left(U_{1} \cap A\right) \cup\left(U_{2} \cap A\right) \\
& \varnothing=\left(U_{1} \cap A\right) \cap\left(U_{2} \cap A\right)
\end{aligned}
\]
Because \(A\) is connected, there exists \(i \in\{1,2\}\) with
\[
U_{i} \cap A=\varnothing
\]
Because \(A \subseteq X\), it follows:
\[
\begin{equation*}
A \subseteq X \backslash U_{i} \tag{*}
\end{equation*}
\]
Because \(U_{i} \in \operatorname{Top}(X)\), it is:
\[
\begin{equation*}
X \backslash U_{i} \text { is closed } \tag{**}
\end{equation*}
\]
With the definition of \(\bar{A}\), (*) and (**) we have:
\[
\bar{A} \subseteq X \backslash U_{i}
\]
especially with \(B \subseteq \bar{A}\)
\[
B \subseteq X \backslash U_{i}
\]
and finally
\[
U_{i} \cap B=\varnothing
\]
```


The Striking Proof:

Theo.
Pre. Let X be a topological space.
Let A a connected subset of X.
Ass. $\forall B \subseteq X \quad(A \subseteq B \subseteq \bar{A} \quad \Rightarrow \quad(B$ is connected $))$
Proof: Let $B \subseteq X$ with $A \subseteq B \subseteq \bar{A}$.
THE FIRST ASSUMPTION: B is not connected
Then there exists $U_{1}, U_{2} \in \operatorname{Top}(X)$ with

$$
\begin{align*}
& B=\left(U_{1} \cap B\right) \cup\left(U_{2} \cap B\right) \\
& \varnothing=\left(U_{1} \cap B\right) \cap\left(U_{2} \cap B\right) \tag{2}\\
& \left(\left(U_{1} \cap B\right) \neq \varnothing\right) \wedge \quad\left(\left(U_{2} \cap B\right) \neq \varnothing\right)
\end{align*}
$$

Because $A \subseteq B$, the following is true:

$$
\begin{align*}
& A=\left(U_{1} \cap A\right) \cup\left(U_{2} \cap A\right) \tag{3}\\
& \varnothing=\left(U_{1} \cap A\right) \cap\left(U_{2} \cap A\right)
\end{align*}
$$

Because $B \subseteq \bar{A}$, it follows:

$$
\begin{equation*}
\left(U_{1} \cap A \neq \varnothing\right) \wedge\left(U_{2} \cap A \neq \varnothing\right) \tag{4}
\end{equation*}
$$

THIS IS A CONTRADICTION TO (1)!

NOW THE PROOF OF (4):

THE SECOND ASSUMPTION: $\left(U_{1} \cap A=\varnothing\right) \vee\left(U_{2} \cap A=\varnothing\right)$

Then there exists $i \in\{1,2\}$ with

$$
U_{i} \cap A=\varnothing
$$

Because $A \subseteq X$, it follows:

$$
\begin{equation*}
A \subseteq X \backslash U_{i} \tag{5}
\end{equation*}
$$

Because $U_{i} \in \operatorname{Top}(X)$, it is:

$$
\begin{equation*}
X \backslash U_{i} \text { is closed } \tag{6}
\end{equation*}
$$

With the definition of \bar{A}, (5) and (6) we have:
$\bar{A} \subseteq X \backslash U_{i}$
especially with $B \subseteq \bar{A}$
$B \subseteq X \backslash U_{i}$
and finally
$U_{i} \cap B=\varnothing$

THIS IS A CONTRADICTION TO (2)!
ONE (OR BOTH?) OF THE TWO ASSUMPTIONS FAILED, BUT I CAN'T DECIDE WHICH! I BREAK HERE (I DO NOT KNOW HOW TO GO ON) !

