A
 Modification Of
 Euler's
 Polygonal Method

Euler's Polygonal Method:

Let $t_{0} \in \mathbb{R}$.
Let $b \in \mathbb{R}$ with $t_{0}<b$.
Let M be a open subset of \mathbb{R} with $M \neq \varnothing$.
Let $f: M \times\left[t_{0}, b\right] \rightarrow \mathbb{R}$ be a mapping.
Let $\eta \in M$.
Let $h \in \mathbb{R}_{+}$.
Take a look at the "Initial Value Problem":

$$
\begin{aligned}
& y^{\prime}=f(y, t) \\
& y\left(t_{0}\right)=\eta
\end{aligned}
$$

With the following recursion you get an approximation for this IVP

$$
\begin{aligned}
& y_{i+1}:=y_{i}+h f\left(y_{i}, t_{i}\right) \\
& t_{i+1}:=t_{i}+h
\end{aligned}
$$

This recursion is called "Euler's Polygonal Method". It is well known and can be found in "Stoer, Bulirsch: Numerische Mathematik 2, Springer-Lehrbuch".

For the number $n \in \mathbb{N}_{0}$ of steps in this method we have:

$$
n \leq \operatorname{FLOOR}\left(\frac{\left(b-t_{0}\right)}{h}\right)
$$

Modification:

Take a look at the following example $f: \mathbb{R} \times\left[t_{0}, b\right] \rightarrow \mathbb{R}$ with $b \rightarrow 1, b<1:$

$$
\forall t \in\left[t_{0}, b\right] \quad \forall y \in \mathbb{R} \quad f(y, t):=\sin \left(\frac{1}{1-t}\right)
$$

In this example you must adapt $h \in \mathbb{R}_{+}$for f to get reasonable results. My suggestion is:

$$
\begin{aligned}
t_{i+1} & :=t_{i}+\frac{h}{\sqrt{1+\left(f\left(y_{i}, t_{i}\right)\right)^{2}}} \\
y_{i+1} & :=y_{i}+\left(t_{i+1}-t_{i}\right) f\left(y_{i}, t_{i}\right)
\end{aligned}
$$

The number of steps in this method depends on b, t_{0}, h and f. Cave: Check for endless loop!

Explanation:

The suggestion is the result of trying to run through the recursion with arc length $=1$. For any $\alpha, \beta \in \mathbb{R}$ with $\alpha<\beta$ and any continuously differentiable mapping $g:[\alpha, \beta] \rightarrow \mathbb{R}$ you have:

$$
\forall t_{1}, t_{2} \in[\alpha, \beta]\binom{\left(t_{1} \leq t_{2}\right) \Rightarrow}{\left(\operatorname{ArcLength}\left(g \mid\left[t_{1}, t_{2}\right]\right)=\int_{t_{1}}^{t_{2}} \sqrt{1+\left(g^{\prime}(\tau)\right)^{2}} d \tau\right)}
$$

This can be found in "Bronstein, Semendjajew: Taschenbuch der Mathematik, Verlag Harri Deutsch, Thun und Frankfurt (Main)".

Discussion:

The example $f: \mathbb{R} \times\left[t_{0}, b\right] \rightarrow \mathbb{R}$ has an important property:

$$
\forall t \in\left[t_{0}, b\right] \quad \forall y \in \mathbb{R} \quad(f(y, t)=0 \Rightarrow \quad(t \text { is irrational }))
$$

So, if you get $f(y, t)=0$ on your computer, you made a rounding error! This means especially:

$$
\frac{h}{\sqrt{1+\left(f\left(y_{i}, t_{i}\right)\right)^{2}}}<h \quad(\text { in the new polygonal method for } f)
$$

The new method is more accurate than Euler's Polygonal Method.

