Future of Voting

Christian Reinbothe Sudermanplatz 8 - 10

50670 Köln Germany

mailto:Christian.Reinbothe@T-Online.DE
http://WWW.Reinbothe.DE

1. Run-Off

We take a look at a normal democratically election. Assume that $n \in \mathbb{N}_+$ is the number of eligible voters and that we have two politians P_1 and P_2 .

If the election is over, than there are $n_1,n_2\,\in\,\mathbb{N}$ with

The politician P_1 got n_1 votes. The politician P_2 got n_2 votes. $n_1 + n_2 \le n$

In this case we have:

Iff $n_1 > n_2$, P_1 has won the election. Iff $n_1 < n_2$, P_2 has won the election. Iff $n_1 = n_2$, there is a deadlock between P_1 and P_2 .

Observation:

Iff the election is decided, then a lot of votes are lost.

2. Proportional Representation

We replace the two politicians P_1 and P_2 with political parties. Let $l \in \mathbb{N}_+$ be the chairs in the house of parliament. Then we have for $n_1 + n_2 > 0$:

$$\begin{array}{l} P_1 \ \, \mathrm{got} \ \, \displaystyle \frac{n_1}{n_1\,+\,n_2} \cdot l \ \, \mathrm{chairs.} \\ P_2 \ \, \mathrm{got} \ \, \displaystyle \frac{n_2}{n_1\,+\,n_2} \cdot l \ \, \mathrm{chairs.} \end{array}$$

This is much better than a run-off. Remarks:

A rounding error is possible. If in doubt, the parties can make a compromise. (So the parties can handle a deadlock.)

3. Suggestion

Instead of voting with as single vote for one party and computing the chairs, just vote the factors of l.

Let $k \in \mathbb{N}_+$ the number of involved political parties and let P_1, \dots, P_k be these parties. First we define a function $F : \mathbb{R}^k \to \mathbb{R}^k$:

$$\forall \alpha \in \mathbb{R}^{k} \left(\alpha \neq 0 \implies \left(\forall \kappa \in \{1, \dots, k\} \quad \left(F(\alpha)\right)_{\kappa} \coloneqq \frac{\alpha_{\kappa}}{\sum_{j=1}^{k} \left|\alpha_{j}\right|} \right) \right)$$
$$F(0) \coloneqq 0$$

This function is a kind of barycenter. It holds:

$$\forall \alpha \in \mathbb{R}^{k} \left(\alpha \neq 0 \implies \left(\sum_{j=1}^{k} \left| (F(\alpha))_{j} \right| = 1 \right) \right)$$

Cave!: You must understand the definition of $F : \mathbb{R}^k \to \mathbb{R}^k$. It computes the proportionally percentage of $|x_k|$ of $\sum_{j=1}^k |x_j|$. It normalizes (x_1, \dots, x_k) .

We define a second function $\boldsymbol{G}: \operatorname{\mathbb{R}}^k \to \operatorname{\mathbb{R}}^k$

$$\forall \alpha \in \mathbb{R}^{k} \ \forall j \in \{1, \dots, k\} \quad \left(\left(\alpha_{j} \leq 0 \right) \implies \left(\left(\left(G \left(\alpha \right) \right)_{j} \right) \coloneqq 0 \right) \right)$$
$$\forall \alpha \in \mathbb{R}^{k} \ \forall j \in \{1, \dots, k\} \quad \left(\left(\alpha_{j} \geq 0 \right) \implies \left(\left(\left(G \left(\alpha \right) \right)_{j} \right) \coloneqq \alpha_{j} \right) \right)$$

This function forgets the parties with voting < 0!

Assume that $(v_1, \ldots, v_n) \in (\mathbb{R}^k)^n$ is the votings of the eligible voters. Then we have:

 $F\left(v_{j}\right)$ is the wish of the voter i for the factors of l .

Now we compute an intermediate result $\lambda \in \mathbb{R}^k$ as

$$\forall j \in \{1, \dots, k\} \quad \lambda_j := \sum_{i=1}^n \left(F\left(v_i\right) \right)_j$$

(Vote Counting!) (To count the votings all votes must be normalized.)

Finally, we can define the result $\Lambda \in \mathbb{R}^k$ of the election as

 $\Lambda := (F \circ G)(\lambda)$

So every party P_j gets $\left(\Lambda_j\cdot l\right)$ chairs in the house of parliament. Remarks:

A rounding error is possible. The new algorithm is difficult. The new algorithm needs an application to count the votes. Negative voting is possible.

4. An Example Voting

You can do a ranking for the parties. Just give the parties a grading from 0 - 15:

"0" = none approvement ... "15" = most approvement

These are the school gradings in Germany.

5. Negative Voting

Consider the party P_j . If you give this party a "-1" and all other parties a "0", you can compensate votings from other eli-gible voters a little bit.