1. Tools

Def.: Let J be a non-empty interval of \mathbb{R}.
Let $\phi: J \rightarrow \mathbb{R}$ be a mapping.
We now define:

1. $\phi: J \rightarrow \mathbb{R}$ is convex, iff
$\forall x, y \in J \quad \forall t \in[0 ; 1] \quad \phi(t x+(1-t) y) \leq t \phi(x)+(1-t) \phi(y)$
2. Let $\phi(J) \subseteq \mathbb{R}_{+}$.
$\phi: \mathcal{J} \rightarrow \mathbb{R}$ is logarithmically convex, iff
$\ln (\phi): J \rightarrow \mathbb{R}$ is convex

Rem. : Let $\phi(J) \subseteq \mathbb{R}_{+}$.
Because exp: $\mathbb{R} \rightarrow \mathbb{R}$ is convex and monotonically increasing, we get the following:
$(\phi: J \rightarrow \mathbb{R}$ is logarithmically convex) \Rightarrow
$(\phi: \mathcal{J} \rightarrow \mathbb{R}$ is convex)

Theo.:

Pre.: Let \mathcal{J} be a non-empty interval of \mathbb{R}.
Let $\phi: J \rightarrow \mathbb{R}$ be a differentiable mapping.
Ass.: $\quad(\phi: J \rightarrow \mathbb{R}$ is convex) \Leftrightarrow
$\left(\phi^{\prime}: J \rightarrow \mathbb{R}\right.$ is monotonically increasing)

Theo.:
Pre.: Let J be a non-empty interval of \mathbb{R}.
Let $\phi: J \rightarrow \mathbb{R}$ be a 2-times differentiable mapping.
Ass.: $\quad(\phi: J \rightarrow \mathbb{R}$ is convex) \Leftrightarrow
$\phi^{\prime \prime} \geq 0$

2. Gamma-Function

The Gamma-Funktion $\Gamma: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is for all $\alpha \in \mathbb{R}_{+}$defined through the absolutely convergent integral

$$
\Gamma(\alpha):=\underbrace{\int_{0}^{\infty} \tau^{\alpha-1} \cdot e^{-\tau} d \tau}_{>0}
$$

From literature we have:

$$
\begin{align*}
& \Gamma: \mathbb{R}_{+} \rightarrow \mathbb{R} \text { is analytically } \tag{1}\\
& \forall \alpha \in \mathbb{R}_{+} \quad \Gamma(\alpha+1)=\alpha \cdot \Gamma(\alpha) \tag{2}\\
& \forall k \in \mathbb{N}_{0} \quad \Gamma(k+1)=k! \tag{3}
\end{align*}
$$

$$
\begin{align*}
& \Gamma: \mathbb{R}_{+} \rightarrow \mathbb{R} \text { is logarithmically convex } \tag{4}\\
& \text { (and ergo convex) }
\end{align*}
$$

$$
\begin{equation*}
\Gamma(1)=1 \text { and } \Gamma(2)=1 \tag{5}
\end{equation*}
$$

With (4) and (5) we have:

$$
\begin{equation*}
\Gamma \text { । }[2 ; \infty[\text { is monotonically increasing } \tag{6}
\end{equation*}
$$

We now define a mapping $\gamma:]-1 ; \infty[\rightarrow \mathbb{R}$ through

$$
\forall u \in]-1 ; \infty[\quad \gamma(u):=\Gamma(u+1)
$$

Then we have with (2):

$$
\begin{equation*}
\forall v \in]-1 ; \infty[\quad \gamma(v+1)=(v+1) \gamma(v) \tag{7}
\end{equation*}
$$

In addition we have with (6):

$$
\begin{equation*}
\gamma \mid[1 ; \infty[\text { is monotonically increasing } \tag{8}
\end{equation*}
$$

3. A Look at the sinh-Function

Let $x=i d_{\mathbb{R}}$.
Let $\tilde{x}=\left(\right.$ id $\left._{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
Take a look at

$$
\sinh =\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}=\sum_{\substack{i=0 \\ i \text { ungerade }}}^{\infty} \frac{x^{i}}{i!}
$$

For $\alpha \in \mathbb{R}_{+}$we define the mapping $\tilde{s}_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ through

$$
\begin{align*}
\tilde{s}_{\alpha}:= & \sum_{n=0}^{\infty} \frac{\tilde{x}^{2 n+1+\alpha}}{\gamma(2 n+1+\alpha)}= \\
= & \tilde{x}^{\alpha}\left(\sum_{n=0}^{\infty} \frac{\tilde{x}^{2 n+1}}{\gamma(2 n+1+\alpha)}\right)= \tag{9}\\
= & \sum_{i=0}^{\infty} \frac{\tilde{x}^{i+\alpha}}{\gamma(i+\alpha)} \\
& i \text { ungerade }
\end{align*}
$$

With the theorem about the radius of convergence we have:

$$
\begin{equation*}
\tilde{s}_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R} \text { is well-defined and differentiable } \tag{10}
\end{equation*}
$$

4. A Look at the cosh-Function

Let $x=i d_{\mathbb{R}}$.
Let $\tilde{x}=\left(i d_{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
Take a look at

$$
\cosh =\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}=\sum_{\substack{i=0 \\ i \text { gerade }}}^{\infty} \frac{x^{i}}{i!}
$$

For $\alpha \in \mathbb{R}_{+}$we define the mapping $\tilde{c}_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ through

$$
\begin{align*}
\tilde{c}_{\alpha}: & : \sum_{n=0}^{\infty} \frac{\tilde{x}^{2 n+\alpha}}{\gamma(2 n+\alpha)}= \\
= & \tilde{x}^{\alpha}\left(\sum_{n=0}^{\infty} \frac{\tilde{x}^{2 n}}{\gamma(2 n+\alpha)}\right)= \tag{11}\\
= & \sum_{i=0}^{\infty} \frac{\tilde{x}^{i+\alpha}}{\gamma(i+\alpha)} \\
& i \text { gerade }
\end{align*}
$$

With the theorem about the radius of convergence we have:

$$
\begin{equation*}
\tilde{c}_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R} \text { is well-defined and differentiable } \tag{12}
\end{equation*}
$$

5. Differentiate

Let $\alpha \in \mathbb{R}_{+}$.
Let $x=\left(i d_{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
Then we have with (2) and (7):

$$
\begin{aligned}
\left(\tilde{s}_{\alpha}\right)^{\prime} & =\sum_{n=0}^{\infty} \frac{\left(x^{2 n+1+\alpha}\right)^{\prime}}{\gamma(2 n+1+\alpha)}= \\
& =\sum_{n=0}^{\infty} \frac{(2 n+1+\alpha)}{\gamma(2 n+1+\alpha)} x^{2 n+\alpha}= \\
& =\sum_{n=0}^{\infty} \frac{x^{2 n+\alpha}}{\gamma(2 n+\alpha)}= \\
& =\tilde{C}_{\alpha}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\tilde{c}_{\alpha}\right)^{\prime} & =\sum_{n=0}^{\infty} \frac{\left(x^{2 n+\alpha}\right)^{\prime}}{\gamma(2 n+\alpha)}= \\
& =\sum_{n=0}^{\infty} \frac{(2 n+\alpha)}{\gamma(2 n+\alpha)} x^{2 n-1+\alpha}= \\
& =\frac{\alpha}{\gamma(\alpha)} x^{\alpha-1}+\sum_{n=1}^{\infty} \frac{(2 n+\alpha)}{\gamma(2 n+\alpha)} x^{2 n-1+\alpha}= \\
& =\frac{\alpha}{\Gamma(\alpha+1)} x^{\alpha-1}+\sum_{n=1}^{\infty} \frac{x^{2 n-1+\alpha}}{\gamma(2 n-1+\alpha)}= \\
& =\frac{x^{\alpha-1}}{\Gamma(\alpha)}+\sum_{n=0}^{\infty} \frac{x^{2 n+1+\alpha}}{\gamma(2 n+1+\alpha)}= \\
& =\frac{x^{\alpha-1}}{\Gamma(\alpha)}+\tilde{s}_{\alpha}
\end{aligned}
$$

6. Specification of the ODE

Let $x=\left(i d_{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
We have:

$$
\forall \alpha \in \mathbb{R}_{+}\binom{\tilde{s}_{\alpha}}{\tilde{c}_{\alpha}}^{\prime}=\binom{\left(\tilde{s}_{\alpha}\right)^{\prime}}{\left(\tilde{c}_{\alpha}\right)^{\prime}}=\binom{\tilde{c}_{\alpha}}{\tilde{s}_{\alpha}}+\binom{0}{\frac{x^{\alpha-1}}{\Gamma(\alpha)}}
$$

i. e.

$$
\forall \alpha \in \mathbb{R}_{+}\left(\begin{array}{l}
\binom{\tilde{S}_{\alpha}}{\tilde{c}_{\alpha}} \text { is differentiable and } \tag{13}\\
\text { it suffices the ordinary } \\
\text { linear differential equation } \\
y^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) y+\binom{0}{\frac{x^{\alpha-1}}{\Gamma(\alpha)}} \text { on } \mathbb{R}_{+}
\end{array}\right)
$$

7. Solution of the ODE

In [2] one can find the following theorem:

Theo.:

Pre.: Let $n \in \mathbb{N}_{+}$.
Let J be a non-empty open interval of \mathbb{R}.
Let $A: J \rightarrow M_{n \times n}(\mathbb{R})$ be a continuous mapping.
Let $b: J \rightarrow \mathbb{R}^{n}$ be a continuous mapping.
Let $\xi \in J$.
Let $\eta \in \mathbb{R}^{n}$.

Ass.: The initial-value problem

$$
\begin{equation*}
y^{\prime}=A(t) y+b(t) \quad y(\xi)=\eta \quad t \in J \tag{14}
\end{equation*}
$$

has exactly one solution. It exists in all of J.

Rem.: With [2] there exists a fundamental system $X: J \rightarrow G L_{n}(\mathbb{R})$ of the homogeneous ODE $y^{\prime}=A(t) y$ with $X(\xi)=E_{n}$. Then the solution of the initialvalue problem above is:

$$
\begin{equation*}
\forall t \in J \quad y(t)=x(t)\left(\eta+\int_{\xi}^{t}(x(\tau))^{-1} b(\tau) d \tau\right) \tag{15}
\end{equation*}
$$

8. Application of the Previous Theorem

Let $\alpha \in \mathbb{R}_{+}$.
Let $x=\left(i d_{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
In the specific case of section 6 . is $J=\mathbb{R}_{+}, n=2$ and the mappings $A: J \rightarrow M_{2 \times 2}(\mathbb{R})$ and $b: J \rightarrow \mathbb{R}^{2}$ are defined by

$$
\begin{aligned}
& \forall t \in J \quad A(t):=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \forall t \in J \quad b(t):=\binom{0}{\frac{t^{\alpha-1}}{\Gamma(\alpha)}}
\end{aligned}
$$

We define 2 differentiable mappings $f: J \rightarrow \mathbb{R}^{2}$ and $g: J \rightarrow \mathbb{R}^{2}$ by

$$
\begin{aligned}
& \forall t \in J \quad f(t):=\binom{\cosh (t)}{\sinh (t)} \\
& \forall t \in J \quad g(t):=\binom{\sinh (t)}{\cosh (t)}
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
& \forall t \in J \quad f^{\prime}(t)=\binom{\sinh (t)}{\cosh (t)}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\binom{\cosh (t)}{\sinh (t)}=A(t) \cdot f(t) \\
& \forall t \in J \quad g^{\prime}(t)=\binom{\cosh (t)}{\sinh (t)}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\binom{\sinh (t)}{\cosh (t)}=A(t) \cdot g(t)
\end{aligned}
$$

i. e.

$$
\begin{equation*}
\binom{f: J \rightarrow \mathbb{R}^{2} \text { und } g: J \rightarrow \mathbb{R}^{2} \text { are solutions }}{\text { of the homogeneous ODE } y^{\prime}=A(t) y} \tag{16}
\end{equation*}
$$

We define a mapping $H: J \rightarrow M_{2 \times 2}(\mathbb{R})$ by

$$
\forall t \in J \quad H(t):=(f(t) \quad g(t))=\left(\begin{array}{ll}
\cosh (t) & \sinh (t) \tag{17}\\
\sinh (t) & \cosh (t)
\end{array}\right)
$$

Because of (16) and (17), these mapping has the properties:

$$
\begin{align*}
& \forall t \in J \quad \operatorname{det}(H(t))=\cosh ^{2}(t)-\sinh ^{2}(t)=1 \neq 0 \tag{18}\\
& \forall t \in J \quad H(t) \in \operatorname{GL}_{2}(\mathbb{R}) \tag{19}\\
& \forall t \in J \quad(H(t))^{-1}=\left(\begin{array}{cc}
\cosh (t) & -\sinh (t) \\
-\sinh (t) \quad \cosh (t)
\end{array}\right) \tag{20}\\
& \binom{H: J \rightarrow \mathrm{GL}_{2}(\mathbb{R}) \text { is a fundamental system }}{\text { of the homogeneous ODE } y^{\prime}=A(t) y} \tag{21}
\end{align*}
$$

We define a mapping $T_{\alpha}: J \rightarrow \mathbb{R}^{2}$ by

$$
\begin{align*}
\forall t \in J \quad T_{\alpha}(t) & :=\Gamma(\alpha) \cdot(H(t))^{-1} \cdot\binom{\tilde{s}_{\alpha}(t)}{\tilde{c}_{\alpha}(t)}= \\
& =\Gamma(\alpha) \cdot\left(\begin{array}{cc}
\cosh (t) & -\sinh (t) \\
-\sinh (t) & \cosh (t)
\end{array}\right) \cdot\binom{\tilde{s}_{\alpha}(t)}{\tilde{c}_{\alpha}(t)}= \tag{22}\\
& =\Gamma(\alpha)\binom{\tilde{s}_{\alpha}(t) \cosh (t)-\tilde{c}_{\alpha}(t) \sinh (t)}{-\tilde{S}_{\alpha}(t) \sinh (t)+\tilde{c}_{\alpha}(t) \cosh (t)}
\end{align*}
$$

Finally we prove:

$$
T_{\alpha} \text { is an antiderivative of } x^{\alpha-1}\binom{-\sinh (x)}{\cosh (x)} \text { on } \mathbb{R}_{+}
$$

respectively

$$
\begin{equation*}
\forall t, \xi \in J \quad T_{\alpha}(t)-T_{\alpha}(\xi)=\int_{\xi}^{t} \tau^{\alpha-1}\binom{-\sinh (\tau)}{\cosh (\tau)} d \tau \tag{23}
\end{equation*}
$$

Proof of (23):
Let $\xi \in J$.
We define a mapping $X: J \rightarrow G_{2}(\mathbb{R})$ by

$$
\forall t \in J \quad X(t):=H(t) \cdot(H(\xi))^{-1}
$$

Because $(H(\xi))^{-1}$ is constant and regular, it follows with (21) and [2]:

$$
\left(\begin{array}{l}
X: J \rightarrow \mathrm{GL}_{2}(\mathbb{R}) \text { is a fundamental system } \\
\text { of the homogeneous oDE } y^{\prime}=A(t) y \text { and } \\
X(\xi)=E_{2}
\end{array}\right)
$$

Because of (13), $\binom{\tilde{s}_{\alpha}}{\tilde{c}_{\alpha}}$ is a solution of the inital-value problem

$$
y^{\prime}=A(t) y+b(t) \quad y(\xi)=\binom{\tilde{s}_{\alpha}(\xi)}{\tilde{c}_{\alpha}(\xi)} \quad t \in J
$$

With the theorem in section 7. and (15) we have for all $t \in J$:

$$
\begin{aligned}
& \left(\begin{array}{ll}
\tilde{s}_{\alpha} & (t) \\
\tilde{c}_{\alpha}(t)
\end{array}\right)=X(t)\left(\binom{\tilde{s}_{\alpha}(\xi)}{\tilde{c}_{\alpha}(\xi)}+\int_{\xi}^{t}(X(\tau))^{-1} b(\tau) d \tau\right)= \\
& =H(t)(H(\xi))^{-1}\left(\binom{\tilde{s}_{\alpha}(\xi)}{\tilde{c}_{\alpha}(\xi)}+\int_{\xi}^{t}\left(H(\tau)(H(\xi))^{-1}\right)^{-1} b(\tau) d \tau\right)= \\
& =H(t)(H(\xi))^{-1}\left(\binom{\tilde{S}_{\alpha}(\xi)}{\tilde{C}_{\alpha}(\xi)}+\int_{\xi}^{t} H(\xi)(H(\tau))^{-1} b(\tau) d \tau\right)= \\
& \left.=H(t)(H(\xi))^{-1}\binom{\tilde{s}_{\alpha}(\xi)}{\tilde{c}_{\alpha}(\xi)}+\int_{\xi}^{t}(H(\tau))^{-1} b(\tau) d \tau\right)
\end{aligned}
$$

But we have for all $t \in J$:

$$
\begin{aligned}
(H(t))^{-1} b(t) & =\frac{1}{\Gamma(\alpha)}\left(\begin{array}{cc}
\cosh (t) & -\sinh (t) \\
-\sinh (t) & \cosh (t)
\end{array}\right)\binom{0}{t^{\alpha-1}}= \\
& =\frac{t^{\alpha-1}}{\Gamma(\alpha)}\binom{-\sinh (t)}{\cosh (t)}
\end{aligned}
$$

Finally, we can transform

$$
\begin{gathered}
\forall t \in J \quad \Gamma(\alpha)\left((H(t))^{-1}\binom{\tilde{S}_{\alpha}(t)}{\tilde{c}_{\alpha}(t)}-(H(\xi))^{-1}\binom{\tilde{S}_{\alpha}(\xi)}{\tilde{c}_{\alpha}(\xi)}\right)= \\
=\int_{\xi}^{t} \tau^{\alpha-1}\binom{-\sinh (\tau)}{\cosh (\tau)} d \tau
\end{gathered}
$$

respectively

$$
\forall t \in J \quad T_{\alpha}(t)-T_{\alpha}(\xi)=\int_{\xi}^{t} \tau^{\alpha-1}\binom{-\sinh (\tau)}{\cosh (\tau)} d \tau
$$

With this (23) is proved.

9. Limites

Let $\alpha \in \mathbb{R}_{+}$.
With (9) and (11) we have:

$$
\begin{aligned}
& \binom{\tilde{S}_{\alpha}}{\tilde{c}_{\alpha}}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{2} \text { is continuously extendible in } 0 \text { and } \\
& \lim _{\xi \rightarrow 0+}\binom{\tilde{S}_{\alpha}(\xi)}{\tilde{c}_{\alpha}(\xi)}=\binom{0}{0}
\end{aligned}
$$

With (22) we have:

$$
\begin{aligned}
& T_{\alpha}: \mathbb{R}_{+} \rightarrow \mathbb{R}^{2} \text { is continuously extendible in } 0 \text { and } \\
& \lim _{\xi \rightarrow 0+} T_{\alpha}(\xi)=\binom{0}{0}
\end{aligned}
$$

It follows with (23):

$$
\forall t \in \mathbb{R}_{+} \int_{\xi}^{t} \tau^{\alpha-1}\binom{-\sinh (\tau)}{\cosh (\tau)} d \tau \text { converges for }(\xi \rightarrow 0+)
$$

and

$$
\begin{aligned}
\forall t \in \mathbb{R}_{+} \quad T_{\alpha}(t) & =\lim _{\xi \rightarrow 0+} \int_{\xi}^{t} \tau^{\alpha-1}\binom{-\sinh (\tau)}{\cosh (\tau)} d \tau= \\
& =\int_{0}^{t} \tau^{\alpha-1}\binom{-\sinh (\tau)}{\cosh (\tau)} d \tau
\end{aligned}
$$

10. Result

Let $\alpha \in \mathbb{R}_{+}$.
Let $x=\left(i d_{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
Then we have:
$\Gamma(\alpha)\left(-\tilde{s}_{\alpha}(x) \cosh (x)+\tilde{c}_{\alpha}(x) \sinh (x)\right)$ is an antiderivative of $x^{\alpha-1} \sinh (x)$ on \mathbb{R}_{+}and
$\forall t \in \mathbb{R}_{+} \Gamma(\alpha)\left(-\tilde{S}_{\alpha}(t) \cosh (t)+\tilde{c}_{\alpha}(t) \sinh (t)\right)=\int_{0}^{t} \tau^{\alpha-1} \sinh (\tau) d \tau$
and
$\Gamma(\alpha)\left(-\tilde{s}_{\alpha}(x) \sinh (x)+\tilde{c}_{\alpha}(x) \cosh (x)\right)$ is an antiderivative of $x^{\alpha-1} \cosh (x)$ on \mathbb{R}_{+}and
$\forall t \in \mathbb{R}_{+} \Gamma(\alpha)\left(-\tilde{s}_{\alpha}(t) \sinh (t)+\tilde{c}_{\alpha}(t) \cosh (t)\right)=\int_{0}^{t} \tau^{\alpha-1} \cosh (\tau) d \tau$

You can obviously get antiderivatives of $x^{\alpha-1} \sinh (\beta x)$ and $x^{\alpha-1} \cosh (\beta x)$ by the substitution $\tau \mapsto \beta \tau\left(\beta \in \mathbb{R}_{+}\right)$.

Because of $\forall \tau \in \mathbb{R} \quad(\sinh (-\tau)=-\sinh (\tau) \wedge \cosh (-\tau)=\cosh (\tau))$ you can obviously get at last antiderivatives of $x^{\alpha-1} \sinh (\beta x)$ und $x^{\alpha-1} \cosh (\beta x)(\beta \neq 0)$.

11. Literature

[1] Jürgen Neukirch
„Algebraische Zahlentheorie"
Springer-Verlag Berlin Heidelberg New York
[2] Wolfgang Walter
"Gewöhnliche Differentialgleichungen"
Springer-Verlag Berlin Heidelberg New York
[3] Bronstein - Semendjajew
"Taschenbuch der Mathematik"
Verlag Harri Deutsch, Thun und Frankfurt (Main)
[4] www.Wikipedia.org
[5] N. N. Lebedev
"Special Functions \& Their Applications" Dover Publications, Inc., New York
[6] Milton Abramowitz and Irene Stegun "Handbook of Mathematical Functions"
Dover Publications, Inc., New York

