
1. Tools 
 
 
Def.: 
 

Let J  be a non-empty interval of . 
Let  be a mapping. φ →:    J
We now define: 
 

 1. φ
 

→:    J  is convex, iff 

[ ] ( )( ) ( ) ( ) ( )∀ ∈ ∀ ∈ φ + − ≤ φ + − φ,   0;1   1 1x y J t tx t y t x t y
 

 2. 
 

Let ( ) +Jφ ⊆ . 

φ →:    J  is logarithmically convex, iff 

( )φ →ln :    J  is convex 
 

Rem.: 
 

Let . ( )φ ⊆ +J

Because  is convex and monotonically increa-
sing, we get the following: 

→exp :  

 
( )
( )
φ →

φ →

:     is logarithmically convex  

:     is convex

J

J

⇒
 

 
 
 
 
Theo.: 
 

 

Pre.: 
 

Let J  be a non-empty interval of . 
Let  be a differentiable mapping. φ →:    J
 

Ass.: 
 

( )
( )
φ → ⇔

′φ →

:  is convex  

:  is monotonically increasing

J

J
 

 
 
 
 
Theo.: 
 

 

Pre.: 
 

Let J  be a non-empty interval of . 
Let  be a 2-times differentiable mapping. φ →:    J
 

Ass.: 
 

( )φ →
′′φ ≥
:  is convex  

0

J ⇔
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2. Gamma-Function 
 
 
The Gamma-Funktion Γ →+:     is for all α ∈ +  defined 
through the absolutely convergent integral 
 

     ( )
∞

α− −τΓ α = τ ⋅ τ

>

∫ 1:  

0
0

e d

 
From literature we have: 
 
     is analytically (1) Γ →+:    

 
    ( ) ( )∀α ∈ Γ α + = α ⋅ Γ α+   1  (2) 

 
    ( )∀ ∈ Γ + =  10k k !k  (3) 

 

     (4) 
( )
Γ →+:     is logarithmically convex

and ergo convex
 
    ( )Γ =1 1 and ( )Γ =2 1 (5) 
 
With (4) and (5) we have: 
 
     is monotonically increasing (6) [Γ | 2; [∞
 
We now define a mapping ] [γ ∞ →: -1;  through 
 
    ] [ ( ) ( )∀ ∈ − ∞ γ = Γ +1;   : 1u u u  
 
Then we have with (2): 
 
    ] [ ( ) ( ) ( )∀ ∈ − ∞ γ + = + γ1;   1 1v v v v

[∞

 (7) 
 
In addition we have with (6): 
 
     is monotonically increasing (8) [γ | 1;
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3. A Look at the sinh-Function 
 
 
Let x . = id

Let ( )= +id |x . 

Take a look at 
 

    
( )

∞ ∞+
= =

+= =
∑ ∑

2 1

2 1 !
0 0

 ungerade

n ix x
n i

n i
i

sinh  
!

 
For  we define the mapping α ∈ + →α +:s  through 

 

    

( )

( )

( )

+ +α∞
= =α γ + + α=

+∞ α =
 γ + + α= 

+α∞
=

γ + α=

∑

∑

∑

2 1
:

2 1
0

2 1
  

2 1
0

  
0

 ungerade

nx
s

n
n

nx
x

n
n

ix
i

i
i

 =


 (9) 

 
With the theorem about the radius of convergence we have: 
 
    →α +:s  is well-defined and differentiable (10) 
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4. A Look at the cosh-Function 
 
 
Let x . = id

Let ( )= +id |x . 

Take a look at 
 

    
( )

∞ ∞
= =

= =
∑ ∑

2

2 ! !
0 0

 gerade

n ix x
n i

n i
i

cosh  

 
For  we define the mapping α ∈ + →α +:c  through 

 

    

( )

( )

( )

+α∞
= =α γ + α=

∞ α =
 γ + α= 

+α∞
=

γ + α=

∑

∑

∑

2
:

2
0

2
  

2
0

  
0

 gerade

nx
c

n
n

nx
x

n
n

ix
i

i
i

 =


 (11) 

 
With the theorem about the radius of convergence we have: 
 
    →α +:c  is well-defined and differentiable (12) 
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5. Differentiate 
 
 
Let . α ∈ +
Let x . ( )= +id |

Then we have with (2) and (7): 
 

    

( ) ( )
( )

( )
( )

( )

′+ +α∞
′ = =α γ + + α=

∞ + + α +α= =
γ + + α=

∞ +α
= =

γ + α=
= α

∑

∑

∑

2 1

2 1
0

2 1 2    
2 1

0
2

    
2

0
    

nx
s

n
n

n nx
n

n
nx
n

n
c

 

 
and 
 

    

( ) ( )
( )

( )
( )

( )
( )
( )

( ) ( )

( ) ( )

( )

′+α∞
′ = =α γ + α=

∞ + α − +α= =
γ + α=

∞ + αα α− − +α= +
γ α γ + α=

∞ − +αα α−= +
Γ α + γ − + α=

∞α− + +α
= + =

Γ α γ + + α=
α−

= + αΓ α

∑

∑

∑

∑

∑

2

2
0

2 2 1    
2

0

21 2    
2

1
2 1

1    
1 2 1

1
1 2 1

    
2 1

0
1

    

nx
c

n
n

n nx
n

n

n nx x
n

n
nx

x
n

n
nx x
n

n

x
s

=

=

1

 
 

- 5 - 



6. Specification of the ODE 
 
 
Let x . ( )= +id |

We have: 
 

    
( )
( ) ( )

  ′′      αα α α−   ∀α ∈ = = +   +    ′   α α    Γ αα   

0

1  
ss c

x
c sc

 

 
i. e. 
 

    

( )

  α  
  α  
 
∀α ∈ + 
  
    α−′ = +    




+    Γ α  

 is differentiable and

it suffices the ordinary
  linear differential equation

0
0 1 1  on 
1 0

s

c

y y x

 (13) 
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7. Solution of the ODE 
 
 
In [2] one can find the following theorem: 
 
Theo.: 
 

  

Pre.: 
 

Let . ∈ +n

Let J  be a non-empty open interval of . 
Let ( )→ ×: MA J n n  be a continuous mapping. 

Let  be a continuous mapping. →: nb J
Let . ξ ∈ J

Let . η ∈ n

 

 

Ass.: 
 

The initial-value problem 
 
    ( ) ( ) ( )′ = + ξ = η        y A t y b t y t ∈ J  
 
has exactly one solution. It exists in all of J . 
 

 
 
(14)
 
 

Rem.: 
 

With [2] there exists a fundamental system 
 of the homogeneous ODE ( )→:  GLX J n ( )′ =y A t y  

with ( )ξ =X En . Then the solution of the initial-

value problem above is: 
 

     ( ) ( ) ( )( ) ( )
 
 −∀ ∈ = η + τ τ τ 
  ξ 

∫ 1   

t

t J y t X t X b d

 

 
 
 
 
 
 
 

(15)
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8. Application of the Previous 
   Theorem 
 
 
Let . α ∈ +
Let x . ( )= +id |

In the specific case of section 6. is = +
2

J ,  and the  

mappings  and  are defined by 

= 2n

(→ ×: M2 2A J ) →:b J

 

     ( )  
∀ ∈ =  

 

0 1
  :

1 0
t J A t

    ( )
( )

 
 α−∀ ∈ =  
 Γ α 

0

1  :t J b t t  

 

We define 2 differentiable mappings f J  and g J  
by 

→ 2: → 2:

 

    ( )
( )
( )

 
∀ ∈ =  

 

cosh
  :

sinh

t
t J f t

t
 

    ( )
( )
( )

 
∀ ∈ =  

 

sinh
  :

cosh

t
t J g t

t
 

 
Then we have: 
 

    ( )
( )
( )

( )
( )

( ) ( )
    ′∀ ∈ = = ⋅ = ⋅    

    

sinh cosh0 1
  

1 0cosh sinh

t t
t J f t A t f t

t t
 

 

    ( )
( )
( )

( )
( )

( ) ( )
    ′∀ ∈ = = ⋅ = ⋅    

    

cosh sinh0 1
  

1 0sinh cosh

t t
t J g t A t g t

t t
 

 
i. e.  
 

     (16) 
( )

 → → 
 ′ = 

2 2:  und :  are solutions

of the homogeneous ODE 

f J g J

y A t y
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We define a mapping ( )→ ×: M2 2H J  by 

 

    ( ) ( ) ( )( ) ( ) ( )
( ) ( )

 
∀ ∈ = = 



cosh sinh
  :    

sinh cosh

t t
t J H t f t g t

t 
t
 (17) 

 
Because of (16) and (17), these mapping has the properties: 
 

     (18) ( )( ) ( ) ( )∀ ∈ = − = ≠2 2  det cosh sinh 1 0t J H t t t

     (19) ( ) ( )∀ ∈ ∈  GL2t J H t

    ( )( ) ( ) ( )
( ) ( )

−−∀ ∈ = −

cosh sinh1  
sinh cosh

t t
t J H t

t



t
 (20) 

    
( )

( )
→ 

  ′ = 

: GL  is a fundamental system2
of the homogeneous ODE 

H J

y A t y
 (21) 

 

We define a mapping T J  by →α
2:

 

    

( ) ( ) ( )( )
( )
( )

( )
( ) ( )
( ) ( )

( )
( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

 − α ∀ ∈ = Γ α ⋅ ⋅ =α  α 
 −  α = Γ α ⋅ ⋅ =   −  α 

 −α α = Γ α
 − +α α 

1  :

cosh sinh
             

sinh cosh

cosh sinh
             

sinh cosh

s t
t J T t H t

c t

s tt t

t t c t

s t t c t t

s t t c t t

 (22) 

 
Finally we prove: 
 

    T  is an antiderivative of α
( )
( )

− α−



sinh1
cosh

x

x



τ

d

x  on  +

 
respectively 
 

     (23) ( ) ( )
( )
( )

− τ α−∀ ξ ∈ − ξ = τ α α τξ
∫

sinh1,   
cosh

t
t J T t T
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Proof of (23): 
Let . ξ ∈ J
We define a mapping ( )→: GL2X J  by 

 

    ( ) ( ) ( )( )−∀ ∈ = ⋅ ξ 1  :t J X t H t H  
 

Because  is constant and regular, it follows with (21) 
and [2]: 

( )( )−ξ 1H

 

    

( )
( )

( )

→ 
 

′ = 
  ξ = 

: GL  is a fundamental system2
of the homogeneous ODE  and

 2

X J

y A t y

X E

 

 

Because of (13), 
 α

α 

s

c
 


 is a solution of the inital-value prob-

lem 
 

    ( ) ( ) ( )
( )
( )

 ξα ′ = + ξ =
 ξα 

        
s

y A t y b t y t
c

∈ J

J

τ =

 

 
With the theorem in section 7. and (15) we have for all t : ∈
 

     

( )
( )

( )
( )
( )

( )( ) ( )

( ) ( )( )
( )
( )

( ) ( )( )( ) ( )

( ) ( )( )
( )
( )

( ) ( )( ) ( )

( ) ( )( )
( )
( )

( )( ) ( )

    ξ −α α    = + τ τ τ =    ξ α α    ξ 
   −ξ− −α  = ξ + τ ξ τ  ξ α  ξ 
  ξ− −α  = ξ + ξ τ τ τ =  ξ α  ξ 

  ξ− −α  = ξ + τ τ τ  ξα  ξ

∫

∫

∫

∫

1

11 1     

1 1     

1 1     

ts t s
X t X b d

c t c

ts
H t H H H b d

c

ts
H t H H H b d

c

ts
H t H H b d

c
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But we have for all t : ∈ J
 

    

( )( ) ( )
( )

( ) ( )
( ) ( )

( )
( )
( )

 − − = =   α− −Γ α    
α− − 

=  
Γ α  

0cosh sinh11
1sinh cosh

1 sinh
           

cosh

t t
H t b t

t t t

tt
t

 

 
Finally, we can transform 
 

    

( ) ( )( )
( )
( )

( )( )
( )
( )

( )
( )

    ξ− −α α    ∀ ∈ Γ α − ξ =
    ξα α    

− τ α−= τ τ 
τ ξ

∫

1 1  

sinh1             
cosh

s t s
t J H t H

c t c

t
d

 

 
respectively 
 

     ( ) ( )
( )
( )

− τ α−∀ ∈ − ξ = τ  α α τ ξ
∫

sinh1   
cosh

t
t J T t T dτ

 
With this (23) is proved. 
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9. Limites 
 
Let . α ∈ +
With (9) and (11) we have: 
 

    
( )
( )

 α  →+ α 
 ξ  α  =   ξξ→ +  α 

2:   is continuously extendible in 0 and

0
lim

00

s

c

s

c

 

 
With (22) we have: 
 

     
( )

→α +
 

ξ =  αξ→ +  

2:   is continuously extendible in 0 and

0
lim

00

T

T

 
It follows with (23): 
 

     
( )
( )

( )
− τ α−∀ ∈ τ τ ξ → + τ ξ

∫
sinh1    converges for 0+
cosh

t
t d

 
and 
 

     

( )
( )
( )

( )
( )

− τ α−∀ ∈ = τ τ = + α τξ→ +  ξ

− τ α−= τ τ 
τ 

∫

∫

sinh1  lim  
cosh0

sinh1                
cosh

0

t
t T t d

t
d
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10. Result 
 
 
Let . α ∈ +
Let x . ( )= +id |

Then we have: 
 
 
 

( ) ( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( ) ( )( ) ( )

Γ α − +α α
α−

+

α−∀ ∈ Γ α − + = τ τ τα α+ ∫

cosh sinh  is an antiderivative

1of sinh  on  and

1  cosh sinh sinh

0

s x x c x x

x x

t
t s t t c t t d

 

 
 
 
and 
 
 
 

( ) ( ) ( ) ( ) ( )( )
( )

( ) ( ) ( ) ( ) ( )( ) ( )

Γ α − +α α
α−

+

α−∀ ∈ Γ α − + = τ τ τα α+ ∫

sinh cosh  is an antiderivative

1of cosh  on  and

1  sinh cosh cosh

0

s x x c x x

x x

t
t s t t c t t d

)

 

 
 
 

You can obviously get antiderivatives of (α− β1 sinhx x  and 

 by the substitution (α− β1 coshx )x τ βτ ( )β ∈ + . 

 
 
 
Because of ( ) ( ) ( ) (( )∈ −τ = − τ ∧ −τ τ sinh sinh   cosh =cosh

α−
)∀τ  

you can obviously get at last antiderivatives of ( )β1 sinh

( )βcosh x

x x  

und x  α−1 ( )β ≠ 0 . 
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