Radius of Convergence
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Proof:
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1. case: Py > Py

There is t € Rﬁ_ with Py > t > Py - Then we have:
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2. case: Py < Pgy
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On the other hand we have because of (*) for all k € NO
with k =2 1:

k A k ‘a ‘
z n _tn+l _ Z n -|t|n+l _
o (n+ 1)! =0 (n+ 1)!
; £ Pl
_ 0l |t|l + Z n ) |t|n+l <
1! a1 (n+ 1)!
a k a
< 0l . |t|l n Z n . |t|n+l <
1! i1 v(n+ a)
a k a
< 0l |t|l + Z n ) |t|n+l _
1! P (n + a)
40 1 1 X ‘a ‘
el = = e B o = e
1! o y(n + a)

This is a contradiction!



