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Let [ ]ρ ∈ ∞0;0  be the radius of convergence of 

 
 ⋅
 =  ∈

∑ !
0

0

k a nn x
nn k

. Let [ ]ρ ∈ ∞α 0;

( )

be the radius of 

convergence of 
 +α⋅

α 

nx

k

 
 

. 
γ += ∈

∑
0

0

k an
nn

 
We have to prove: 
 
     ρ = ρα0
 

Hypo.: ρ ≠
 

ρα0  

 

- 3 - 



 
 1. case: ρ >  ρα0
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This is a contradiction! 
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 2. case: ρ <  ρα0
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This is a contradiction! 
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