Radius of Convergence

Theo.:

Pre.: Let $x=$ id $_{\mathbb{R}}$.
Let $\tilde{x}=\left(i d_{\mathbb{R}}\right) \mid \mathbb{R}_{+}$.
Let $\alpha \in \mathbb{R}_{+}$.
$\operatorname{Let}\left(a_{i}\right)_{i \in \mathbb{N}_{0}}$ be a sequence in \mathbb{R}.

Ass... $\left(\sum_{n=0}^{k} \frac{a_{n}}{n!} \cdot x^{n}\right)_{k \in \mathbb{N}_{0}}$ and $\left(\sum_{n=0}^{k} \frac{a_{n}}{\gamma(n+\alpha)} \cdot \tilde{x}^{n+\alpha}\right)_{k \in \mathbb{N}_{0}}$
have the same radius of convergence

Rem. : Let $R \in[0 ; \infty]$.
R is the radius of convergence of
$\left(\sum_{n=0}^{k} \frac{a_{n}}{\gamma(n+\alpha)} \cdot \tilde{x}^{n+\alpha}\right)_{k \in \mathbb{N}_{0}}$, iff for all $t \in[0 ; \infty[$
$\left(t<R \quad \Rightarrow\binom{\left(\sum_{n=0}^{k} \frac{a_{n}}{\gamma(n+\alpha)} \cdot t^{n+\alpha}\right)_{k \in \mathbb{N}_{0}}}{i s\right.$ absolutely convergent }$)$
and

$$
\left(t>R \quad \Rightarrow\binom{\left.\left.\left(\sum_{n=0}^{k} \frac{a_{n}}{\gamma(n+\alpha)} \cdot t^{n+\alpha}\right)_{k \in \mathbb{N}_{0}}\right)\right)}{\text { is divergent }}\right.
$$

Rem. : Let $R \in[0 ; \infty[$.
Let R be the radius of convergence of $\left(\sum_{n=0}^{k} \frac{a_{n}}{n!} \cdot x^{n}\right)_{k \in \mathbb{N}_{0}}$. With the methods of the following proof one can show:

$$
\begin{aligned}
& \left.\left(\sum_{n=0}^{k} \frac{a_{n}}{n!} \cdot R^{n}\right)_{k \in \mathbb{N}_{0}} \quad \text { is absolutely convergent }\right) \Rightarrow \\
& \left(\left(\sum_{n=0}^{k} \frac{a_{n}}{\gamma(n+\alpha)} \cdot R^{n+\alpha}\right)_{k \in \mathbb{N}_{0}} \quad \text { is absolutely convergent }\right)
\end{aligned}
$$

Proof: Let $\rho_{0} \in[0 ; \infty]$ be the radius of convergence of $\left(\sum_{n=0}^{k} \frac{a_{n}}{n!} \cdot x^{n}\right)_{k \in \mathbb{N}_{0}}$. Let $\rho_{\alpha} \in[0 ; \infty]$ be the radius of convergence of $\left(\sum_{n=0}^{k} \frac{a_{n}}{\gamma(n+\alpha)} \cdot \tilde{x}^{n+\alpha}\right)_{k \in \mathbb{N}_{0}}$.

We have to prove:

$$
\rho_{0}=\rho_{\alpha}
$$

Hypo.: $\rho_{0} \neq \rho_{\alpha}$

1. case: $\rho_{0}>\rho_{\alpha}$

There is $t \in \mathbb{R}_{+}$with $\rho_{0}>t>\rho_{\alpha}$. Then we have:
$\left(\sum_{n=0}^{k} \frac{a_{n}}{n!} \cdot t^{n}\right)_{k \in \mathbb{N}_{0}}$ is absolutely convergent
and
$\left(\sum_{n=0}^{k} \frac{a_{n}}{\gamma(n+\alpha)} \cdot t^{n+\alpha}\right)_{k \in \mathbb{N}_{0}}$ is divergent
On the other hand we have because of (3) and (8) for all $k \in \mathbb{N}_{0}$ with $k \geq 1:$

$$
\begin{aligned}
& \sum_{n=0}^{k}\left|\frac{a_{n}}{\gamma(n+\alpha)} \cdot t^{n+\alpha}\right|= \\
& \quad=|t|^{\alpha}\left(\frac{\left|a_{0}\right|}{\gamma(\alpha)}+\sum_{n=1}^{k} \frac{\left|a_{n}\right|}{\gamma(n+\alpha)} \cdot|t|^{n}\right) \leq \\
& \quad \leq|t|^{\alpha}\left(\frac{\left|a_{0}\right|}{\gamma(\alpha)}+\sum_{n=1}^{k} \frac{\left|a_{n}\right|}{\gamma(n)} \cdot|t|^{n}\right)= \\
& \quad=|t|^{\alpha}\left(\frac{\left|a_{0}\right|}{\Gamma(\alpha+1)}+\sum_{n=1}^{k} \frac{\left|a_{n}\right|}{\Gamma(n+1)} \cdot|t|^{n}\right)= \\
& \quad=|t|^{\alpha}\left(\frac{\left|a_{0}\right|}{\Gamma(\alpha+1)}+\sum_{n=1}^{k} \frac{\left|a_{n}\right|}{n!} \cdot|t|^{n}\right) \leq \\
& \quad \leq|t|^{\alpha}\left(\frac{\left|a_{0}\right|}{\Gamma(\alpha+1)}+\sum_{n=0}^{k} \frac{\left|a_{n}\right|}{n!} \cdot|t|^{n}\right)
\end{aligned}
$$

This is a contradiction!
2. case: $\rho_{0}<\rho_{\alpha}$

Because $\alpha \in \mathbb{R}_{+}$, there exists $I \in \mathbb{N}_{+}$with $I-1 \leq \alpha<I$. Then we have with (8):
$\forall n \in \mathbb{N}_{+} \quad \frac{1}{(n+1)!}=\frac{1}{\gamma(n+1)} \leq \frac{1}{\gamma(n+\alpha)}$
If one differentiate the power series $\left(\sum_{n=0}^{k} \frac{a_{n}}{(n+1)!} \cdot x^{n+1}\right)_{k \in \mathbb{N}_{0}} \quad l$-times, he gets the power series $\left(\sum_{n=0}^{k} \frac{a_{n}}{n!} \cdot x^{n}\right)_{k \in \mathbb{N}_{0}}$. With Analysis we have for the
radius of convergence $R \in[0 ; \infty]$ of $\left(\sum_{n=0}^{k} \frac{a_{n}}{(n+1)!} \cdot x^{n+1}\right)_{k \in \mathbb{N}_{0}}$
$R \leq \rho_{0}<\rho_{\alpha}$
Ergo there exists $t \in \mathbb{R}_{+}$with $R<t<\rho_{\alpha}$. Then we have:
$\left(\sum_{n=0}^{k} \frac{a_{n}}{(n+1)!} \cdot t^{n+1}\right)_{k \in \mathbb{N}_{0}}$ is divergent
and
$\left(\sum_{n=0}^{k} \frac{a_{n}}{\gamma(n+\alpha)} \cdot t^{n+\alpha}\right)_{k \in \mathbb{N}_{0}}$ is absolutely convergent

On the other hand we have because of (*) for all $k \in \mathbb{N}_{0}$ with $k \geq 1$:

$$
\begin{aligned}
\sum_{n=0}^{k}\left|\frac{a_{n}}{(n+1)!} \cdot t^{n+1}\right| & =\sum_{n=0}^{k} \frac{\left|a_{n}\right|}{(n+1)!} \cdot|t|^{n+1}= \\
& =\frac{\left|a_{0}\right|}{1!} \cdot|t|^{I}+\sum_{n=1}^{k} \frac{\left|a_{n}\right|}{(n+1)!} \cdot|t|^{n+1} \leq \\
& \leq \frac{\left|a_{0}\right|}{1!} \cdot|t|^{I}+\sum_{n=1}^{k} \frac{\left|a_{n}\right|}{\gamma(n+\alpha)} \cdot|t|^{n+1} \leq \\
& \leq \frac{\left|a_{0}\right|}{1!} \cdot|t|^{I}+\sum_{n=0}^{k} \frac{\left|a_{n}\right|}{\gamma(n+\alpha)} \cdot|t|^{n+1}= \\
& =\frac{\left|a_{0}\right|}{1!} \cdot|t|^{I}+|t|^{1-\alpha} \cdot\left(\sum_{n=0}^{k} \frac{\left|a_{n}\right|}{\gamma(n+\alpha)} \cdot|t|^{n+\alpha}\right)
\end{aligned}
$$

This is a contradiction!

