A Bijection $\mathbb{N}_{0} \rightarrow\left(\mathbb{N}_{0}\right)^{2}$

Let $q \in \mathbb{N}$ be with $q \geq 2$.
A set A_{q} is defined as

$$
A_{q}:=\left\{a \in\{0, \ldots, q-1\}\left(\mathbb{N}_{0}\right): \quad \exists k \in \mathbb{N}_{0} \quad \forall \underset{j \geq k}{j \in \mathbb{N}_{0}} \quad a_{j}=0\right\}
$$

Then there is one and only one mapping $\Phi_{2, q}: \mathbb{N}_{0} \rightarrow\left(\mathbb{N}_{0}\right)^{2}$ with

$$
\forall a \in A_{q} \quad \Phi_{2, q}\left(\sum_{j=0}^{\infty} a_{j} q^{j}\right)=\left(\begin{array}{ll}
\sum_{j=0}^{\infty} a_{2 j} & q^{j} \\
\sum_{j=0}^{\infty} a_{2 j+1} & q^{j}
\end{array}\right)
$$

Obviously the following is true:

$$
\Phi_{2, q}: \mathbb{N}_{0} \rightarrow\left(\mathbb{N}_{0}\right)^{2} \text { is a bijection }
$$

Remark:
The above infinite sums are de facto only finite sums.

Example:
$\Phi_{2,10}(204040152364)=\binom{534}{244126}$

