1. What does "canonical" mean?

1.1. Definition as of [1]

Def. I: A concept amongst a number of concepts is defined as canonical, iff it has a special meaning and an especialy transparent figure.

1.2. Definition as of [3]

Def. II: canonical, best adjusted to a given situation or problem

1.3. Definition as of [4]

Def.: III canonical, in a natural way logically distinguished

2. Problems with the "canonical" Base of \mathbb{R}^2

2.1. Thesis

The base $\mathfrak{B} := \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) \in \left(\mathbb{R}^2 \right)^2$ of \mathbb{R}^2 is in no way logically distinguished against the base $\left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) \in \left(\mathbb{R}^2 \right)^2$ of \mathbb{R}^2 . \mathfrak{B} is not "canonical" but arbitrary in the sense of the definitions I, II and III.

2.2. An Objection?

But $det\begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0\\ 1 \end{pmatrix} = 1 \neq -1 = det\begin{pmatrix} 0\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix}$ is true?

2.3. Solution

The definition of det(...) is also **not** "**canonical**", but **arbitra-ry**. It is:

$$\det \begin{pmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{pmatrix} = \sum_{\pi \in S(n)} \left(\operatorname{sgn}(\pi) \left(\prod_{i=1}^{n} a_{i,\pi(i)} \right) \right)$$

The **arbitrariness** in this definition is the direction, in which the matrix is read. It is also possible, to define another determinant $\widetilde{\det}(...)$ as follows:

$$\widetilde{\det} \begin{pmatrix} a_{n,1} & \cdots & a_{n,n} \\ \vdots & \ddots & \vdots \\ a_{1,1} & \cdots & a_{1,n} \end{pmatrix} \coloneqq \sum_{\pi \in S(n)} \left(\operatorname{sgn}(\pi) \left(\prod_{i=1}^{n} a_{i,\pi(i)} \right) \right)$$

With det(...) the following is true:

$$\widetilde{\det}\left(\begin{pmatrix}1\\0\end{pmatrix},\begin{pmatrix}0\\1\end{pmatrix}\right) = -1 \neq 1 = \widetilde{\det}\left(\begin{pmatrix}0\\1\end{pmatrix},\begin{pmatrix}1\\0\end{pmatrix}\right)$$

The Thesis 2.1. is confirmed.

2.4. A Try

It comes to mind, to define the term ""canonical" base of \mathbb{R}^2 " as follows:

$$\forall v, w \in \mathbb{R}^2 \quad \begin{pmatrix} \left((v, w) \text{ is the canonical base of } \mathbb{R}^2 \right) & :\Leftrightarrow \\ \left(\left(v = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right) & \wedge & \left(w = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) \end{pmatrix} \end{pmatrix}$$

But that is **arbitrary**, because you could define the term ""canonical" base of \mathbb{R}^2 " another way:

$$\forall v, w \in \mathbb{R}^2 \quad \left(\begin{pmatrix} (v, w) & \text{is the canonical base of } \mathbb{R}^2 \end{pmatrix} & :\Leftrightarrow \\ \begin{pmatrix} \begin{pmatrix} (v, w) & \text{is the canonical base of } \mathbb{R}^2 \end{pmatrix} & \land & \begin{pmatrix} w & = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} \end{pmatrix} & \land & \begin{pmatrix} w & = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} \right)$$

The only thing, that is possible, is to define the term "standard-base of $\mathbb{R}^{2}{''}\colon$

$$\forall v, w \in \mathbb{R}^2 \quad \begin{pmatrix} ((v, w) \text{ is the standard-base of } \mathbb{R}^2) & :\Leftrightarrow \\ ((v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}) & \land & (w = \begin{pmatrix} 0 \\ 1 \end{pmatrix}) \end{pmatrix}$$

The "standard-base of $\mathbb{R}^2{''}$ is not "canonical", but defined arbitrary. In other words:

The choice of the "standard-base of $\mathbb{R}^2\,{}''$ is favorably, but not mandatory.

3.1. The Neutral Element of a Group G with $\#G \ge 2$ is Not "canonical"

Let G be a set with $\#G \ge 2$ and let $(G; \cdot)$ be a group with neutral element $e \in G$. It will be shown, that every $\vartheta \in G$ causes another group $(G; \odot)$, which is related with $(G; \cdot)$ and has neutral Element ϑ .

Let $\vartheta \in G$ and let \odot : $G \times G \rightarrow G$ be defined as

$$\forall a, b \in G \quad a \odot b \coloneqq a \cdot \vartheta^{-\perp} \cdot b \tag{(*)}$$

Let the mapping ϕ : $\ensuremath{\mathcal{G}}\xspace \to \ensuremath{\mathcal{G}}\xspace$ be defined as

$$\forall a \in G \quad \varphi(a) := \vartheta \cdot a^{-1} \cdot \vartheta \tag{**}$$

With (*) and (**) we have:

$$\forall a, b, c \in G \quad a \odot (b \odot c) = (a \odot b) \odot c \tag{1}$$

$$\forall a \in G \quad a \odot \vartheta = a = \vartheta \odot a \tag{2}$$

$$\forall a \in G \quad a \odot \varphi(a) = \vartheta = \varphi(a) \odot a \tag{3}$$

With (1) - (3) it is shown, that $(G; \odot)$ is a group with neutral element ϑ . Further $\varphi : G \to G$ is the inverse mapping of $(G; \odot)$. Now the relationship between $(G; \odot)$ and $(G; \cdot)$ is:

$$\forall a, b \in G \quad a \cdot b = a \odot \varphi(e) \odot b \tag{4}$$

Result:

Because $\# G \ge 2$, the neutral element $e \in G$ of $(G; \cdot)$ is **not** "canonical".

3.2. The Generating Element of a cyclic Group G with $\#G \ge 2$ is not "canonical"

Let G be a set with $\#G \ge 2$ and let $(G; \cdot)$ be a cyclic group with generating element $\omega \in G$. It will be shown, that every $g \in G$ causes another cyclic group $(G; \odot)$, which is related with $(G; \cdot)$ and has generating element g.

Let $g \in G$. Then there exists $k \in \{1, ..., \#G\}$ with

$$g = \omega^{k} \tag{1}$$

We define $l \in \{0, ..., \# G - 1\}$ and $\vartheta \in G$ as follows:

$$l = k - 1$$
 and $\vartheta = \omega^{l}$ (2)

Let \bigcirc : $G \times G \rightarrow G$ be defines as in 3.1.(*), respectively

$$\forall a, b \in G \quad a \odot b \coloneqq a \cdot \vartheta^{-1} \cdot b \tag{3}$$

Then we have with 3.1.(1) - 3.1.(3):

$$(G; \bigcirc)$$
 is a group with neutral element ϑ (4)

With (1), (2) und (3) we have:

$$\forall m \in \{1, \dots, \# G\} \qquad \bigotimes_{i=1}^{m} g = g^{m} \ \vartheta^{-(m-1)} = \omega^{mk - (m-1)l}$$
(5)

Now is the question, wether $(G; \bigcirc)$ is a cyclic group and wether $g \in G$ is a generating element of $(G; \bigcirc)$. Because of (4) we have to show:

$$\forall n \in \{1, \dots, \# G\} \quad \left(\begin{array}{c} \vartheta = \bigcap_{i=1}^{n} g \quad \Rightarrow \quad n = \# G \\ i = 1 \end{array} \right) \tag{6}$$

Proof of (6):

Let $n \in \{1, \dots, \#G\}$ with $\vartheta = \bigcup_{i=1}^{n} g$. With (2) and (5) follows:

$$\omega^{l} = \vartheta = \omega^{nk - (n-1)l} = \omega^{nk - nl + l}$$

Let $e \in G$ be the neutral element of $(G; \cdot)$. With (2) follows:

$$e = \omega^{l} \omega^{\# G-l} = \omega^{nk-nl+l+\# G-l} = \omega^{nk-nl} = \omega^{n(k-l)} = \omega^{n}$$

Because $\omega \in G$ is a generating element of $(G; \cdot)$, we have at last:

n = # G

Result:

Because 3.1.(4) and $\# G \ge 2$ the generating element $\omega \in G$ of $(G; \cdot)$ is **not "canonical**".

4. Dual Spaces

4.1. Necessary definitions

Def.: Let
$$n \in \mathbb{N}_+$$
.
Let V be a n -dimensional \mathbb{R} -vector space.
1. We define
 $V^* := \{f : V \to \mathbb{R} : f \text{ is } \mathbb{R}\text{-linear}\}$
Then the following is true:

 V^{\star} is a *n*-dimensional \mathbb{R} -vector space V^{\star} is called the dual space of *V*.

2. Let
$$\|...\|$$
 be a norm of V.
We then define a norm $\|...\|_*$ auf V^* through

$$\forall f \in V^* \quad \|f\|_* := \underbrace{\sup\left\{\frac{|f(x)|}{\|x\|} : x \in V \land x \neq 0\right\}}_{=\sup\left\{|f(x)|: x \in V \land \|x\|=1\right\}}$$

 $\|..\|_{*}$ is called the on V^{*} inducted operator norm.

3. Let $\langle \dots; \dots \rangle$ be a scalar product on V. We define a linear mapping $\Theta_{\langle \dots; \dots \rangle, V}$: $V \rightarrow V^*$ through

$$\forall x \in V \quad \Theta_{<\dots;\dots>,V} (x) := < x; \dots >$$

With $< \dots; \dots >$ we have a norm $\| \dots \|$ on V:

$$\forall x \in V \quad \|\mathbf{x}\| = \sqrt{\langle x; x \rangle}$$

Then the following is true:

$$\begin{split} \Theta_{<\dots;\dots>,V} &: (V, \|...\|) \to (V^*, \|...\|_*) \\ \text{is an isometry of normed} \\ \mathbb{R} \text{-vector spaces} \end{split}$$

4. Conducting from 1. and 2. $V^{\star\star} = (V^{\star})^{\star}$ and $\|...\|_{\star\star} = (\|...\|_{\star})_{\star}$ are also defined.

$$V^{\star\star}$$
 is called double dual of V.

⁵. We define a mapping Q_V : $V \rightarrow V^{**}$ through

$$\forall x \in V \ \mathcal{Q}_{V}(x) \coloneqq \underbrace{\begin{pmatrix} v^{\star} \to \mathbb{R} \\ f \mapsto f(x) \end{pmatrix}}_{\in V^{\star \star}}$$

With [2] we have:

 Q_V : $V \rightarrow V^{\star\star}$ is \mathbb{R} -linear and bijektve

Furthermore [2] it holds true for every norm $\|...\|$ of V:

$$\mathcal{Q}_V : (V, \|...\|) \to (V^{**}, \|...\|_{**})$$
 is a \mathbb{R} -linear isometry of **normed** \mathbb{R} -vector spaces.

4.2. Theorem I

Theorem:

Thus we have:

$$\begin{array}{l} \left(\Theta_{<\ldots;\ldots>,\mathbb{R}^2} : \left(\mathbb{R}^2, \|\ldots\| \right) \rightarrow \left(\left(\mathbb{R}^2 \right)^*, \|\ldots\|_* \right) \text{ is a} \\ \mathbb{R}\text{-linear isometry of normed } \mathbb{R}\text{-vector spaces} \end{array} \right)$$

and

$$\begin{pmatrix} \left(-\Theta_{<\dots;\dots>,\mathbb{R}^2}\right): & \left(\mathbb{R}^2,\|...\|\right) \to \left(\left(\mathbb{R}^2\right)^*,\|...\|_*\right) \text{ is a} \\ \mathbb{R}\text{-linear isometry of normed } \mathbb{R}\text{-vector spaces} \end{pmatrix}$$

and

$$\left(-\Theta_{<\ldots;\ldots>,\mathbb{R}^2}\right) = \left(\Theta_{<\ldots;\ldots>,\mathbb{R}^2}\right) \circ \left(-\mathrm{id}_{\mathbb{R}^2}\right)$$

and

$$\left(\Theta_{<\ldots;\ldots>,\mathbb{R}^{2}}\right) = \left(-\Theta_{<\ldots;\ldots>,\mathbb{R}^{2}}\right) \circ \left(-\mathrm{id}_{\mathbb{R}^{2}}\right)$$

and

$$\Theta_{<\ldots;\ldots>,\mathbb{R}^2} \neq -\Theta_{<\ldots;\ldots>,\mathbb{R}^2}$$

So it is clear:

$$\Theta_{<...;...>,\mathbb{R}^2}$$
 is not "canonical"

4.3. Theorem II

Theorem:

Pre.:
Let
$$\Phi$$
: $\mathbb{R}^2 \to (\mathbb{R}^2)^{**}$ be a mapping.
Ass.:
 $\left(\begin{array}{cccc} \text{For every norm } \|..\| & \text{of } \mathbb{R}^2 \text{ is true:} \\ \Phi : & (\mathbb{R}^2, \|..\|) \to ((\mathbb{R}^2)^{**}, \|..\|_{**}) \text{ is a } \mathbb{R}\text{-linear} \\ \text{ isometry of normed } \mathbb{R}\text{-vectorspaces} \end{array} \right) \Leftrightarrow \Phi \in \left\{ \mathcal{Q}_{\mathbb{R}^2}, -\mathcal{Q}_{\mathbb{R}^2} \right\}$

Thus we have:

For every norm
$$\|...\|$$
 of \mathbb{R}^2 is true:
 $\mathcal{Q}_{\mathbb{R}^2}$: $(\mathbb{R}^2, \|...\|) \rightarrow ((\mathbb{R}^2)^{**}, \|...\|_{**})$ is a \mathbb{R} -linear
isometry of normed \mathbb{R} -vectorspaces

and

$$\begin{pmatrix} \text{For every norm } \|...\| & \text{of } \mathbb{R}^2 \text{ is true:} \\ \begin{pmatrix} -\mathcal{Q}_{\mathbb{R}^2} \end{pmatrix} : & \left(\mathbb{R}^2, \|...\|\right) \rightarrow \left(\left(\mathbb{R}^2\right)^{\star\star}, \|...\|_{\star\star}\right) \text{ is a } \mathbb{R}\text{-linear} \\ \text{isometry of normed } \mathbb{R}\text{-vectorspaces} \end{pmatrix}$$

and

$$\left(-\mathcal{Q}_{\mathbb{R}^2}\right) = \left(\mathcal{Q}_{\mathbb{R}^2}\right) \circ \left(-\mathrm{id}_{\mathbb{R}^2}\right)$$

and

$$\left(\mathcal{Q}_{\mathbb{R}^2}\right) = \left(-\mathcal{Q}_{\mathbb{R}^2}\right) \circ \left(-\mathrm{id}_{\mathbb{R}^2}\right)$$

and

$$Q_{\mathbb{R}^2} \neq -Q_{\mathbb{R}^2}$$

So it is clear:

$$\mathcal{Q}_{\mathbb{R}^2}$$
 is not "canonical"

5. Index of Literature

- [1] "Der große Brockhaus" (16. Edition)
 F. A. Brockhaus Wiesbaden 1955
- [2] Graduate Texts in Mathematics 96 John B. Conway, "A Course in Functional Analysis" Second Edition Springer-Verlag Berlin Heidelberg New York
- [3] "Lexikon der Mathematik" Spektrum Akademischer Verlag GmbH Heidelberg 2001
- [4] Lectures in Mathematics 1987 1993 University of Cologne (Germany)