1. What does "canonical" mean?

1.1. Definition as of [1]

Def. I: A concept amongst a number of concepts is defined as canonical, iff it has a special meaning and an especialy transparent figure.

1.2. Definition as of [3]

Def. II: canonical, best adjusted to a given situation or problem

1.3. Definition as of [4]

Def.: III canonical, in a natural way logically distinguished

2. Problems with the

"canonical" Base of \mathbb{R}^{2}

2.1. Thesis

The base $\mathfrak{B}:=\left(\binom{1}{0},\binom{0}{1}\right) \in\left(\mathbb{R}^{2}\right)^{2}$ of \mathbb{R}^{2} is in no way logically distinguished against the base $\left(\binom{0}{1},\binom{1}{0}\right) \in\left(\mathbb{R}^{2}\right)^{2}$ of \mathbb{R}^{2}. \mathfrak{B} is not "canonical" but arbitrary in the sense of the definitions I, II and III.

2.2. An Objection?

But $\operatorname{det}\left(\binom{1}{0},\binom{0}{1}\right)=1 \neq-1=\operatorname{det}\left(\binom{0}{1},\binom{1}{0}\right)$ is true?

2.3. Solution

The definition of $\operatorname{det}(\ldots)$ is also not "canonical", but arbitrary. It is:
$\operatorname{det}\left(\begin{array}{ccc}a_{1,1} & \cdots & a_{1, n} \\ \vdots & \ddots & \vdots \\ a_{n, 1} & \cdots & a_{n, n}\end{array}\right)=\sum_{\pi \in S(n)}\left(\operatorname{sgn}(\pi)\left(\prod_{i=1}^{n} a_{i, \pi(i)}\right)\right)$
The arbitrariness in this definition is the direction, in which the matrix is read. It is also possible, to define another determinant $\widetilde{\operatorname{det}}(\ldots)$ as follows:
$\widetilde{\operatorname{det}}\left(\begin{array}{ccc}a_{n, 1} & \cdots & a_{n, n} \\ \vdots & . & \vdots \\ a_{1,1} & \cdots & a_{1, n}\end{array}\right):=\sum_{\pi \in S(n)}\left(\operatorname{sgn}(\pi)\left(\prod_{i=1}^{n} a_{i, \pi(i)}\right)\right)$

With $\widetilde{\operatorname{det}}(\ldots)$ the following is true:
$\widetilde{\operatorname{det}}\left(\binom{1}{0},\binom{0}{1}\right)=-1 \neq 1=\widetilde{\operatorname{det}}\left(\binom{0}{1},\binom{1}{0}\right)$

The Thesis 2.1. is confirmed.

2.4. A Try

It comes to mind, to define the term ""canonical" base of \mathbb{R}^{2} " as follows:

$$
\forall v, w \in \mathbb{R}^{2}\left(\begin{array}{ll}
\left((v, w) \text { is the canonical base of } \mathbb{R}^{2}\right) & : \Leftrightarrow \\
\left(\left(v=\binom{1}{0}\right) \wedge\left(w=\binom{0}{1}\right)\right)
\end{array}\right)
$$

But that is arbitrary, because you could define the term ""canonical" base of $\mathbb{R}^{2 \prime}$ another way:

$$
\forall v, w \in \mathbb{R}^{2}\left(\begin{array}{ll}
\left((v, w) \text { is the canonical base of } \mathbb{R}^{2}\right) & : \Leftrightarrow \\
\left(\left(v=\binom{0}{1}\right) \wedge\left(w=\binom{1}{0}\right)\right)
\end{array}\right)
$$

The only thing, that is possible, is to define the term "stan-dard-base of $\mathbb{R}^{2 \prime \prime}$:

$$
\forall v, w \in \mathbb{R}^{2}\left(\begin{array}{l}
\left((v, w) \text { is the standard-base of } \mathbb{R}^{2}\right) \quad: \Leftrightarrow \\
\left(\left(v=\binom{1}{0}\right) \wedge\left(w=\binom{0}{1}\right)\right)
\end{array}\right.
$$

The "standard-base of $\mathbb{R}^{2 "}$ is not "canonical", but defined arbitrary. In other words:

The choice of the "standard-base of \mathbb{R}^{2} " is favorably, but not mandatory.

3.1. The Neutral Element of a Group G with $\# G \geq 2$ is Not "canonical"

Let G be a set with $\# G \geq 2$ and let (G; $)$ be a group with neutral element $e \in G$. It will be shown, that every $\vartheta \in G$ causes another group $(G ; \odot)$, which is related with $(G ; \cdot)$ and has neutral Element ϑ.

Let $\vartheta \in G$ and let $\odot: G \times G \rightarrow G$ be defined as

$$
\begin{equation*}
\forall a, b \in G \quad a \odot b:=a \cdot \vartheta^{-1} \cdot b \tag{*}
\end{equation*}
$$

Let the mapping $\varphi: G \rightarrow G$ be defined as

$$
\begin{equation*}
\forall a \in G \quad \varphi(a):=\vartheta \cdot a^{-1} \cdot \vartheta \tag{**}
\end{equation*}
$$

With (*) and (**) we have:

$$
\begin{align*}
& \forall a, b, c \in G \quad a \odot(b \odot c)=(a \odot b) \odot c \tag{1}\\
& \forall a \in G \quad a \odot \vartheta=a=\vartheta \odot a \tag{2}\\
& \forall a \in G \quad a \odot \varphi(a)=\vartheta=\varphi(a) \odot a \tag{3}
\end{align*}
$$

With (1) - (3) it is shown, that $(G ; \odot)$ is a group with neutral element ϑ. Further $\varphi: G \rightarrow G$ is the inverse mapping of $(G ; \odot)$. Now the relationship between $(G ; \odot)$ and $(G ; \cdot)$ is:

$$
\begin{equation*}
\forall a, b \in G \quad a \cdot b=a \odot \varphi(e) \odot b \tag{4}
\end{equation*}
$$

Result:

Because \# $G \geq 2$, the neutral element $e \in G$ of (G; \cdot) is not "canonical".

3.2. The Generating Element of a cyclic Group G with \#G ≥ 2 is not "canonical"

Let G be a set with $\# G \geq 2$ and let $(G ;)$ be a cyclic group with generating element $\omega \in G$. It will be shown, that every $g \in G$ causes another cyclic group $(G ; \odot)$, which is related with $(G ; \cdot)$ and has generating element g.

Let $g \in G$. Then there exists $k \in\{1, \ldots, \# G\}$ with

$$
\begin{equation*}
g=\omega^{k} \tag{1}
\end{equation*}
$$

We define $I \in\{0, \ldots, \# G-1\}$ and $\vartheta \in G$ as follows:

$$
\begin{equation*}
I=k-1 \quad \text { and } \quad \vartheta=\omega^{I} \tag{2}
\end{equation*}
$$

Let $\odot: G \times G \rightarrow G$ be defines as in 3.1.(*), respectively

$$
\begin{equation*}
\forall a, b \in G \quad a \odot b:=a \cdot \vartheta^{-1} \cdot b \tag{3}
\end{equation*}
$$

Then we have with 3.1.(1) - 3.1.(3):
$(G ; \odot)$ is a group with neutral element ϑ

With (1), (2) und (3) we have:

$$
\begin{equation*}
\forall m \in\{1, \ldots, \# G\} \quad \bigodot_{i=1}^{m} g=g^{m} \quad \vartheta^{-(m-1)}=\omega^{m k-(m-1) 1} \tag{5}
\end{equation*}
$$

Now is the question, wether $(G ; \odot)$ is a cyclic group and wether $g \in G$ is a generating element of $(G ; \odot)$. Because of (4) we have to show:

$$
\begin{equation*}
\forall n \in\{1, \ldots, \# G\} \quad\left(\vartheta=\bigodot_{i=1}^{n} g \quad \Rightarrow \quad n=\# G\right) \tag{6}
\end{equation*}
$$

Proof of (6):
Let $n \in\{1, \ldots, \# G\}$ with $\vartheta=\bigodot 9$. With (2) and (5) follows: $i=1$

$$
\omega^{I}=\vartheta=\omega^{n k-(n-1) I}=\omega^{n k-n I+1}
$$

Let $e \in G$ be the neutral element of (G;). With (2) follows:

$$
e=\omega^{I} \omega^{\# G-1}=\omega^{n k-n l+l+\# G-l}=\omega^{n k-n l}=\omega^{n(k-l)}=\omega^{n}
$$

Because $\omega \in G$ is a generating element of $(G ;)$, we have at last:

$$
n=\# G
$$

Result:

Because 3.1.(4) and $\# G \geq 2$ the generating element $\omega \in G$ of (G;•) is not "canonical".

4. Dual Spaces

4.1. Necessary definitions

Def.: Let $n \in \mathbb{N}_{+}$.
Let V be a n-dimensional \mathbb{R}-vector space.

1. We define

$$
V^{\star}:=\{f: V \rightarrow \mathbb{R}: f \text { is } \mathbb{R} \text {-linear }\}
$$

Then the following is true:

$$
\begin{aligned}
& V^{\star} \text { is a n-dimensional } \mathbb{R} \text {-vector space } \\
& V^{\star} \text { is called the dual space of } V \text {. }
\end{aligned}
$$

2. Let $\|\ldots\|$ be a norm of V.

We then define a norm $\|. . .\|_{\star}$ auf V^{*} through

$$
\forall f \in V^{\star}\|f\|_{\star}:=\underbrace{\sup \left\{\frac{|f(x)|}{\|x\|}: x \in V \wedge x \neq 0\right\}}_{=\sup \{|f(x)|: x \in V \wedge\|x\|=1\}}
$$

$\|. .\|_{\star}$ is called the on V^{\star} inducted operator norm.
3. Let $\langle\ldots ; \ldots\rangle$ be a scalar product on V. We define a linear mapping $\Theta_{<\ldots ; \ldots>, V}: V \rightarrow V^{*}$ through

$$
\forall x \in V \quad \Theta_{<\ldots ; \ldots>, V}(x):=<x ; \ldots>
$$

With $<\ldots ; \ldots$ > we have a norm $\|. .$.$\| on V$:

$$
\forall x \in V \quad\|x\|=\sqrt{\langle x ; x\rangle}
$$

Then the following is true:

$$
\begin{aligned}
& \Theta_{<\ldots ; \ldots>, V}: \quad(V,\|\ldots\|) \rightarrow\left(V^{\star},\|\ldots\|_{\star}\right) \\
& \text { is an isometry of normed } \\
& \mathbb{R} \text {-vector spaces }
\end{aligned}
$$

4.

Conducting from 1. and 2. $V^{* *}=\left(V^{*}\right)^{*}$ and $\|\ldots\|_{\star *}=\left(\|. .\|_{\star}\right)_{\star}$ are also defined.
$V^{* *}$ is called double dual of V.
5. We define a mapping $Q_{V}: V \rightarrow V^{* *}$ through

$$
\forall x \in V Q_{V}(x):=\underbrace{\left(\begin{array}{ccc}
V^{\star} & \rightarrow & \mathbb{R} \\
f & \mapsto & f(x)
\end{array}\right)}_{\in V^{\star \star}}
$$

With [2] we have:

$$
Q_{V}: V \rightarrow V^{\star *} \text { is } \mathbb{R} \text {-linear and bijektve }
$$

Furthermore [2] it holds true for every norm \|...\| of V :

$$
\begin{aligned}
& Q_{V}: \quad(V,\|\ldots\|) \rightarrow\left(V^{* *},\|\ldots\|_{\star *}\right) \text { is a } \mathbb{R} \text {-linear } \\
& \text { isometry of normed } \mathbb{R} \text {-vector spaces. }
\end{aligned}
$$

4.2. Theorem I

Theorem:

Pre.:
Let $<\ldots ; \ldots>$ be a scalar product on \mathbb{R}^{2}.
Let $\|. .$.$\| be the norm of \mathbb{R}^{2}$, which is induced by
< ...;... >.
Let $\Theta:\left(\mathbb{R}^{2},\|\ldots\|\right) \rightarrow\left(\left(\mathbb{R}^{2}\right)^{\star},\|\ldots\|_{\star}\right)$ be a \mathbb{R}-linear iso-
metry of normed \mathbb{R}-vector spaces.
Let $\Phi: \mathbb{R}^{2} \rightarrow\left(\mathbb{R}^{2}\right)^{\star}$ be a mapping.

Ass.:

$$
\left.\begin{array}{l}
\Phi:\left(\mathbb{R}^{2},\|\ldots\|\right) \rightarrow\left(\left(\mathbb{R}^{2}\right)^{\star},\|\ldots\|_{\star}\right) \text { is a } \mathbb{R} \text {-linear } \\
\text { isometry of normed } \mathbb{R} \text {-vector spaces }
\end{array}\right) \Leftrightarrow
$$

Thus we have:

$$
\binom{\Theta_{<\ldots ; \ldots>, \mathbb{R}^{2}}:\left(\mathbb{R}^{2},\|\ldots\|\right) \rightarrow\left(\left(\mathbb{R}^{2}\right)^{\star},\|\ldots\|_{\star}\right) \text { is a }}{\mathbb{R} \text {-linear isometry of normed } \mathbb{R} \text {-vector spaces }}
$$

and

$$
\left(\begin{array}{l}
\binom{\left({ }_{<\ldots, \ldots \gg} \mathbb{R}^{2}\right): \quad\left(\mathbb{R}^{2},\|\ldots\|\right) \rightarrow\left(\left(\mathbb{R}^{2}\right)^{\star},\|\ldots\|_{\star}\right) \text { is a }}{\mathbb{R} \text {-linear isometry of normed } \mathbb{R} \text {-vector spaces }}
\end{array}\right.
$$

and

$$
\left(-\Theta{ }_{<\ldots ; \ldots>, \mathbb{R}^{2}}\right)=\left(\begin{array}{l}
\left.\left.\Theta_{<\ldots ; \ldots>, \mathbb{R}^{2}}\right) \circ\left(\text {-id }_{\mathbb{R}^{2}}\right)\right) ~
\end{array}\right.
$$

and

$$
\left(\begin{array}{ll}
\Theta_{<\ldots ; \ldots>, \mathbb{R}^{2}}
\end{array}\right)=\binom{-\Theta}{<\ldots ; \ldots>, \mathbb{R}^{2}} \circ\left(\begin{array}{ll}
-i d_{\mathbb{R}^{2}}
\end{array}\right)
$$

and

$$
\Theta_{<\ldots ; \ldots>, \mathbb{R}^{2}} \neq-\Theta<\ldots ; \ldots>, \mathbb{R}^{2}
$$

So it is clear:

$$
\Theta_{<\ldots ; \ldots>, \mathbb{R}^{2}} \text { is not "canonical" }
$$

4.3. Theorem II

Theorem:

Pre. :
Let $\Phi: \mathbb{R}^{2} \rightarrow\left(\mathbb{R}^{2}\right)^{\star *}$ be a mapping.

Ass.:
$\left(\begin{array}{l}\text { For every norm }\|\ldots\| \text { of } \mathbb{R}^{2} \text { is true: } \\ \Phi: \quad\left(\mathbb{R}^{2},\|\ldots\|\right) \rightarrow\left(\left(\mathbb{R}^{2}\right)^{\star *},\|\ldots\|_{\star *}\right) \text { is a } \mathbb{R} \text {-linear } \\ \text { isometry of normed } \mathbb{R} \text {-vectorspaces }\end{array}\right) \Leftrightarrow$
$\Phi \in\left\{Q_{\mathbb{R}^{2}}, Q_{\mathbb{R}^{2}}\right\}$

Proof: omitted

Thus we have:

$$
\left(\begin{array}{l}
\text { For every norm }\|\ldots\| \text { of } \mathbb{R}^{2} \text { is true: } \\
Q_{\mathbb{R}^{2}}:\left(\mathbb{R}^{2},\|\ldots\|\right) \rightarrow\left(\left(\mathbb{R}^{2}\right)^{\star *},\|\ldots\|_{\star *}\right) \text { is a } \mathbb{R} \text {-linear } \\
\text { isometry of normed } \mathbb{R} \text {-vectorspaces }
\end{array}\right)
$$

and

$$
\left(\begin{array}{l}
\text { For every norm }\|\ldots\| \text { of } \mathbb{R}^{2} \text { is true: } \\
\left(-\mathbb{R}^{2}\right):\left(\mathbb{R}^{2},\|\ldots\|\right) \rightarrow\left(\left(\mathbb{R}^{2}\right)^{\star *},\|\ldots\|_{\star *}\right) \text { is a } \mathbb{R} \text {-linear } \\
\text { isometry of normed } \mathbb{R} \text {-vectorspaces }
\end{array}\right)
$$

and

$$
\left(-Q_{\mathbb{R}^{2}}\right)=\left(Q_{\mathbb{R}^{2}}\right) \circ\left(\text {-id }_{\mathbb{R}^{2}}\right)
$$

and

$$
\left(Q_{\mathbb{R}^{2}}\right)=\left(\begin{array}{ll}
-Q_{\mathbb{R}^{2}}
\end{array}\right) \circ\left(\begin{array}{ll}
-i d_{\mathbb{R}^{2}}
\end{array}\right)
$$

and

$$
Q_{\mathbb{R}^{2}} \neq-Q_{\mathbb{R}^{2}}
$$

So it is clear:

$$
Q_{\mathbb{R}^{2}} \text { is not "canonical" }
$$

5. Index of Literature

[1] "Der große Brockhaus" (16. Edition)
F. A. Brockhaus Wiesbaden 1955
[2] Graduate Texts in Mathematics 96
John B. Conway, "A Course in Functional Analysis" Second Edition
Springer-Verlag Berlin Heidelberg New York
[3] "Lexikon der Mathematik"
Spektrum Akademischer Verlag GmbH Heidelberg 2001
[4] Lectures in Mathematics 1987 - 1993
University of Cologne (Germany)

