1. Symmetry of the $2^{\text {nd }}$ Differential

Theorem:

Pre.: Let $n \in \mathbb{N}_{+}$.
Let G be an open subset of \mathbb{R}^{n}.
Let $\varphi: G \rightarrow \mathbb{R}$ be a mapping.
Let φ be twice differentiable.
Ass.: $\quad \forall p \in G \quad d_{p}^{2} \varphi: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is symmetric

2. A Special Case of Cartan's Derivation

Theorem:

Pre.: Let $n \in \mathbb{N}_{+}$.
Let G be an open subset of \mathbb{R}^{n}.
Let $V: G \rightarrow \mathbb{R}^{n}$ be a continuous differentiable mapping.
Let $\omega: G \rightarrow \mathfrak{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be defined as $\omega:=\sum_{i=1}^{n} V_{i} \cdot \mathrm{~d} x_{i}$ (espacially $\omega: G \rightarrow \mathfrak{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is continuous differentiable).

Ass.: $\quad \forall p \in G \quad\left(\mathfrak{d}_{p} \omega=0 \quad \Leftrightarrow \quad d_{p} V\right.$ ist self-adjoint $)$
Rem.: 1. $\mathfrak{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is the \mathbb{R}-vector-space of all \mathbb{R}-linearforms $\mathbb{R}^{n} \rightarrow \mathbb{R}$.
2. ω is a so called C^{1}-differential form of degree 1.
3. $\mathfrak{d} \ldots$ is Cartan's derivation. If $n=3$, then the following is true:
$\forall p \in G \quad\left(\left(\mathfrak{d}_{p} \omega=0\right) \quad \Leftrightarrow \quad\left(\operatorname{curl}_{p}(V)=0\right)\right)$.

3. Vector Potential

Theo.:

Pre.: Let $n \in \mathbb{N}_{+}$.
Let G be an open subset of \mathbb{R}^{n}.

Ass.: 1. Let $\varphi \in C^{2}(G)$.
Then the follwing is true:
$\left(\forall p \in G \quad\left(d_{p}(\operatorname{grad}(\varphi))\right.\right.$ ist self-adjoint $\left.)\right)$
2. Be G star-shaped.

Be $k \in \mathbb{N}_{+} \cup\{\infty\}$.
Let $V: G \rightarrow \mathbb{R}^{n}$ be a k-times continuous differentiable mapping. Then the following is true:
$\left(\forall p \in G \quad\left(d_{p} V\right.\right.$ ist self-adjoint $\left.)\right) \quad \Rightarrow$
$\exists \varphi \in C^{k+1}(G) \quad V=\operatorname{grad}(\varphi)$

4. The Inversal of 1

Theorem:

Pre.: Let $n \in \mathbb{N}_{+}$.
Let G be an open, star-shaped subset of \mathbb{R}^{n}.
Let $\alpha: G \rightarrow \mathfrak{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be a continuous differentiable mapping.
Let $\beta: G \rightarrow \mathfrak{L}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be defined through
$\forall p \in g \quad \forall v, w \in \mathbb{R}^{n} \quad\left(\beta_{p}\right)(v, w):=\left(\left(d_{p} \alpha\right)(v)\right)(w)$

Ass.: $\quad\left(\forall p \in G \quad\left(\beta_{p}\right.\right.$ ist symmetric $\left.)\right) \quad \Rightarrow$ $\binom{$ There is $\varphi \in C^{2}(G)$ with }{$d \varphi=\alpha$ and $d^{2} \varphi=\beta}$

Rem.: $\quad \mathfrak{L}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)=\left\{b: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ is bilinear $\}$ is a \mathbb{R}-vector-space.

Proof: Let $\mathfrak{E}:=\left(e_{1}, \ldots, e_{n}\right)$ be the standard base of \mathbb{R}^{n}. Let $\mathfrak{X}:=\left(x_{1}, \ldots, x_{n}\right)$ be the base of $\mathfrak{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ dual to \mathfrak{E}.

Let the mapping $V: G \rightarrow \mathbb{R}^{n}$ be defined as

$$
\forall p \in G \quad V(p):=\left(\begin{array}{c}
\alpha_{p}\left(e_{1}\right) \tag{1}\\
\vdots \\
\alpha_{p}\left(e_{n}\right)
\end{array}\right)
$$

Then the following statements are valid:

$$
\begin{equation*}
V: G \rightarrow \mathbb{R}^{n} \text { is continuous differentiable } \tag{2}
\end{equation*}
$$

and

$$
\forall p \in G \quad d_{p} V=\left(\begin{array}{cc}
d_{p}\left(\begin{array}{cc}
\alpha_{\ldots} & \left.\left(e_{1}\right)\right) \\
\vdots & \\
d_{p}\left(\begin{array}{ll}
\alpha_{1} & \left(e_{n}\right)
\end{array}\right)
\end{array}\right)=\left(\begin{array}{c}
\left(d_{p} \alpha\right)\left(e_{1}\right) \\
\vdots \\
\left(d_{p} \alpha\right)\left(e_{n}\right)
\end{array}\right) . \tag{3}
\end{array}\right)
$$

Then the following statement is true:

$$
\begin{equation*}
\forall j \in\{1, \ldots, n\} \quad \forall p \in G \quad\left(d_{p} V\right)\left(e_{j}\right)=\frac{\partial V}{\partial x_{j}} \tag{4}
\end{equation*}
$$

A consequence of (3) is

$$
\forall j \in\{1, \ldots, n\} \quad \forall p \in G \quad\left(d_{p} V\right)\left(e_{j}\right)=\left(\begin{array}{c}
\left(d_{p} \alpha\right)\left(e_{1}\right) \\
\vdots \\
\left(d_{p} \alpha\right)\left(e_{n}\right)
\end{array}\right)\left(e_{j}\right)
$$

Then it follows by premise:

$$
\forall j \in\{1, \ldots, n\} \quad \forall p \in G \quad\left(d_{p} V\right)\left(e_{j}\right)=\left(\begin{array}{c}
\left(\beta_{p}\right)\left(e_{1}, e_{j}\right) \tag{5}\\
\vdots \\
\left(\beta_{p}\right)\left(e_{n}, e_{j}\right)
\end{array}\right)
$$

$\operatorname{Because}\left(\forall p \in G\left(\beta_{p}\right.\right.$ ist symmetric $\left.)\right)$, a consequence of (4) and (5) is

$$
\begin{equation*}
\left(\forall p \in G\left(d_{p} V \text { ist self-adjoint }\right)\right) \tag{6}
\end{equation*}
$$

Because of (2), (6) and theroem 3.2., there exists $\varphi \in C^{2}(G)$ with

$$
\begin{equation*}
V=\operatorname{grad}(\varphi) \tag{7}
\end{equation*}
$$

Because of (1) and (7), for all $\forall i \in\{1, \ldots, n\}$ and all $\forall p \in G$ the following statement is valid:

$$
\left(d_{p} \varphi\right)\left(e_{i}\right)=\frac{\partial \varphi}{\partial x_{i}}(p)=\left(\operatorname{grad}_{p}(\varphi)\right)_{i}=V_{i}(p)=\alpha_{p}\left(e_{i}\right)
$$

respectively

$$
\begin{equation*}
d \varphi=\alpha \tag{8}
\end{equation*}
$$

Then it follows for all $\forall i, j \in\{1, \ldots, n\}$ and all $\forall p \in G$
$\mathrm{d}_{p}^{2} \varphi\left(e_{i}, e_{j}\right)=\left(\mathrm{d}_{p}\left(\left(\mathrm{~d}_{\ldots} \varphi\right)\left(e_{i}\right)\right)\right)\left(e_{j}\right)=\left(\mathrm{d}_{p}\left(\left(\alpha_{\ldots}\right)\left(e_{i}\right)\right)\right)\left(e_{j}\right)$
respectively

$$
d_{p}^{2} \varphi\left(e_{i}, e_{j}\right)=\left(\left(d_{p}(\alpha)\right)\left(e_{i}\right)\right)\left(e_{j}\right)
$$

respectively by premise

$$
d_{p}^{2} \varphi\left(e_{i}, e_{j}\right)=\left(\beta_{p}\left(e_{i}, e_{j}\right)\right)
$$

At last we have

$$
\begin{equation*}
d^{2} \varphi=\beta \tag{9}
\end{equation*}
$$

