Symmetry of the 2nd Differential

Theorem:

Pre.:Let $n \in \mathbb{N}_+$.Let G be an open subset of \mathbb{R}^n .Let φ : $G \to \mathbb{R}$ be a mapping.Let φ be twice differentiable.**Ass.:** $\forall p \in G \quad d_p^2 \varphi$: $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is symmetric

2. A Special Case of Cartan's Derivation

Theorem:

Pre.:	Let $n \in \mathbb{N}_+$.
	Let G be an open subset of \mathbb{R}^n .
	Let $V : G \rightarrow \mathbb{R}^n$ be a continuous differentiable mapping.
	Let $\omega : G \to \mathfrak{L}(\mathbb{R}^n, \mathbb{R})$ be defined as $\omega := \sum_{i=1}^n V_i \cdot dx_i$
	(espacially ω : $G \rightarrow \mathfrak{L}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ is continuous differentiable).
Ass.:	$\forall p \in G \left(\mathbf{\mathfrak{d}}_{p} \omega = 0 \Leftrightarrow \mathbf{d}_{p} V \text{ ist self-adjoint} \right)$
Rem.:	1. $\mathfrak{L}(\mathbb{R}^n, \mathbb{R})$ is the \mathbb{R} -vector-space of all \mathbb{R} -linear-forms $\mathbb{R}^n \to \mathbb{R}$.
	² . ω is a so called C ¹ -differential form of degree 1.
	3. $\boldsymbol{\mathfrak{d}}$ is Cartan's derivation. If $n = 3$, then the following is true:
	$\forall p \in G \left(\left(\boldsymbol{\mathfrak{d}}_{p} \boldsymbol{\omega} = 0 \right) \Leftrightarrow \left(\operatorname{curl}_{p} \left(V \right) = 0 \right) \right).$

3. Vector Potential

Theo.:

Pre.: Let $n \in \mathbb{N}_+$. Let G be an open subset of \mathbb{R}^n . Ass.: 1. Let $\varphi \in \mathbb{C}^2(G)$. Then the follwing is true: $(\forall p \in G \quad (d_p (\operatorname{grad}(\varphi)) \text{ ist self-adjoint}))$ 2. Be G star-shaped. Be $k \in \mathbb{N}_+ \cup \{\infty\}$. Let $V : G \to \mathbb{R}^n$ be a k-times continuous differentiable mapping. Then the following is true: $(\forall p \in G \quad (d_p V \text{ ist self-adjoint})) \Rightarrow$ $\exists \varphi \in \mathbb{C}^{k+1}(G) \quad V = \operatorname{grad}(\varphi)$

4. The Inversal of 1

Theorem:

$$\begin{aligned} \mathbf{Pre.:} & \text{Let } n \in \mathbb{N}_{+}. \\ & \text{Let } G \text{ be an open, star-shaped subset of } \mathbb{R}^{n}. \\ & \text{Let } \alpha : G \to \mathfrak{L}\left(\mathbb{R}^{n}, \mathbb{R}\right) \text{ be a continuous differentiable mapping.} \\ & \text{Let } \beta : G \to \mathfrak{L}^{-2}\left(\mathbb{R}^{n}, \mathbb{R}\right) \text{ be defined through} \\ & \forall p \in g \quad \forall v, w \in \mathbb{R}^{n} \quad \left(\beta_{p}\right)(v, w) \coloneqq \left(\left(d_{p}\alpha\right)(v)\right)(w) \end{aligned}$$
$$\begin{aligned} \mathbf{Ass.:} & \left(\forall p \in G \quad \left(\beta_{p} \text{ ist symmetric}\right)\right) \quad \Rightarrow \\ & \left(\text{There is } \varphi \in \mathbb{C}^{2}(G) \text{ with} \\ & d\varphi = \alpha \text{ and } d^{2}\varphi = \beta \end{aligned} \end{aligned}$$
$$\begin{aligned} \mathbf{Rem.:} & \mathfrak{L}^{-2}\left(\mathbb{R}^{n}, \mathbb{R}\right) = \left\{b : \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R} \text{ is bilinear}\right\} \text{ is a } \\ & \mathbb{R}\text{-vector-space.} \end{aligned}$$
$$\begin{aligned} \mathbf{Proof:} & \text{Let } \mathfrak{E} := \left(e_{1}, \dots, e_{n}\right) \text{ be the standard base of } \mathbb{R}^{n}. \\ & \text{Let } \mathfrak{X} := \left(x_{1}, \dots, x_{n}\right) \text{ be the base of } \mathfrak{L}\left(\mathbb{R}^{n}, \mathbb{R}\right) \text{ dual to } \\ & \mathfrak{E}. \\ & \text{Let the mapping } V : G \to \mathbb{R}^{n} \text{ be defined as} \end{aligned}$$
$$\begin{aligned} & \forall p \in G \quad v\left(p\right) := \begin{pmatrix} \alpha_{p} \left(e_{1}\right) \\ \vdots \\ \alpha_{p} \left(e_{n}\right) \end{pmatrix} \end{aligned} \tag{1}$$
Then the following statements are valid: \\ & V : G \to \mathbb{R}^{n} \text{ is continuous differentiable} \end{aligned}

$$\forall p \in G \quad d_p V = \begin{pmatrix} d_p \left(\alpha_{\dots} \left(e_1 \right) \right) \\ \vdots \\ d_p \left(\alpha_{\dots} \left(e_n \right) \right) \end{pmatrix} = \begin{pmatrix} \left(d_p \alpha \right) \left(e_1 \right) \\ \vdots \\ \left(d_p \alpha \right) \left(e_n \right) \end{pmatrix}$$
(3)

Then the following statement is true:

$$\forall j \in \{1, \dots, n\} \quad \forall p \in G \quad \left(d_p V\right) \left(e_j\right) = \frac{\partial V}{\partial x_j}$$
(4)

A consequence of (3) is

$$\forall j \in \{1, \dots, n\} \quad \forall p \in G \quad \left(d_p V\right) \left(e_j\right) = \begin{pmatrix} \left(d_p \alpha\right) \left(e_1\right) \\ \vdots \\ \left(d_p \alpha\right) \left(e_n\right) \end{pmatrix} \begin{pmatrix} e_j \end{pmatrix}$$

Then it follows by premise:

$$\forall j \in \{1, \dots, n\} \quad \forall p \in G \quad \left(d_p V\right) \left(e_j\right) = \begin{pmatrix} \left(\beta_p\right) \left(e_1, e_j\right) \\ \vdots \\ \left(\beta_p\right) \left(e_n, e_j\right) \end{pmatrix} \quad (5)$$

Because $\left(\forall p \in G \ \left(\beta_p \text{ ist symmetric}\right)\right)$, a consequence of (4) and (5) is

$$\left(\forall p \in G \ \left(d_p V \text{ ist self-adjoint} \right) \right)$$
 (6)

Because of (2), (6) and theroem 3.2., there exists $\phi \in \operatorname{C}^2(G)$ with

$$V = \operatorname{grad}\left(\varphi\right) \tag{7}$$

Because of (1) and (7), for all $\forall i \in \{1, ..., n\}$ and all $\forall p \in G$ the following statement is valid:

$$\left(d_{p} \phi \right) \left(e_{\underline{i}} \right) = \frac{\partial \phi}{\partial x_{\underline{i}}} \left(p \right) = \left(\text{grad}_{p} \left(\phi \right) \right)_{\underline{i}} = V_{\underline{i}} \left(p \right) = \alpha_{p} \left(e_{\underline{i}} \right)$$

respectively

$$d\phi = \alpha \tag{8}$$

Then it follows for all $\forall i,j \in \{1, \ldots, n\}$ and all $\forall p \in G$

$$d_{p}^{2}\varphi\left(e_{j},e_{j}\right) = \left(d_{p}\left(\left(d_{...}\varphi\right)\left(e_{j}\right)\right)\right)\left(e_{j}\right) = \left(d_{p}\left(\left(\alpha_{...}\right)\left(e_{j}\right)\right)\right)\left(e_{j}\right)$$

respectively

$$d_{p}^{2}\phi\left(e_{j},e_{j}\right) = \left(\left(d_{p}\left(\alpha\right)\right)\left(e_{j}\right)\right)\left(e_{j}\right)$$

respectively by premise

$$d_{p}^{2}\varphi\left(e_{j},e_{j}\right) = \left(\beta_{p}\left(e_{j},e_{j}\right)\right)$$

At last we have

$$d^2 \varphi = \beta \tag{9}$$