
1. Introduction 
 
 
1.1. Turing Machines and The  

Halting-Problem after [1] 
 
Theorem: 
 

The halting problem can not be decided on a Turing 
machine. 
 

 
 
1.2. Illustration after [2] 
 
The question really is wether it is possible to write a pro-
gram on a certain given machine M, which evaluates all pro-
grams on M in such a way wether they would end up in an infi-
nite loop or terminate correctly. 
 
A mind theory leads into a contradiction: 
 
Given that on a UNIX-computer U exists a program ‚InfLoop’ 
with the characteristics 
 
 InfLoop accepts one commandline argument 
 
and 
 

For all programs P on U, which do not accept a command-
line argument, it holds 
 
1. ( )  terminates correctlyInfLoop P  

2. ( ) ( )  = 0     terminates correctlyInfLoop P P⇔  
 
Then one can construct a program ‚Paradox’ on U , which leads 
the existence of ‚InfLoop’ into a contradiction (C-Code of 
‚Paradox’ see next page 1.3.). With this program ‚Paradox’ it 
holds 
 

 ( ) ( ) 0      0InfLoop Paradox InfLoop Paradox= ⇔ ≠
 

This is a contradiction! 
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1.3. ‚Paradox’ in C-Code 
 
 
#include <assert.h> 
#include <errno.h> 
#include <process.h> 
#include <stdio.h> 
 
#define FALSE NULL 
#define TRUE !FALSE 
 
#define INFLOOP "InfLoop" 
#define PARADOX "Paradox" 
 
extern int main(int argc, char **argv) 
{ 
   int rc; 
 
   /* call of INFLOOP with argument PARADOX */ 
   rc = spawnl(P_WAIT, INFLOOP, INFLOOP, PARADOX, NULL); 
   /* Exit on error! */ 
   assert(errno == EZERO); 
 
   if (!rc) 
   { 
      /* Here is rc == 0 (that means (INFLOOP PARADOX == 0)).       */ 
      /* Hence the program INFLOOP has taken the decision, that the */ 
      /* program PARADOX DOES NEVER encounter any infinite loop and */ 
      /* that the program PARADOX terminates correctly.             */ 
      /* But the next step in PARADOX is an infinite loop.          */ 
      /* With that is shown:                                        */ 
      /* (INFLOOP PARADOX == 0)  =>  (INFLOOP PARADOX != 0)         */ 
      printf("Infinite loop in \"%s\"!\n", PARADOX); 
      while (TRUE) 
      { 
      } 
   } 
   else 
   { 
      /* Here is rc != 0 (that means (INFLOOP PARADOX != 0)).       */ 
      /* Hence the program INFLOOP has taken the decision, that the */ 
      /* program PARADOX DOES ALWAYS encounter an infinite loop.    */ 
      /* But here PARADOX terminates correctly WITHOUT encountering */ 
      /* any infinite loop.                                         */ 
      /* With that is shown:                                        */ 
      /* (INFLOOP PARADOX != 0)  =>  (INFLOOP PARADOX == 0)         */ 
      printf("\"%s\" has terminated correctly ", PARADOX); 
      printf("WITHOUT encountering any infinite loop.\n"); 
   } 
 
   return(0); 
} 
 

‚Paradox.c’ 
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2. Machine Model 
 
We restrict ourselves now on a simple as possible machine mo-
del. A computer is a quadruple ( ), , ,m M S R  composed out of a 

number , the finite, non-empty set m ∈ + { }
{ }1, ,

: 0, ,255
m

M =
…

…  

(memory), a function S M  (step-function) and a function :  M→
{ }:  0R M ,1→  (running function). 

 
 
 
This simple modell would be possible as we theoretically can 
integrate the different types of memory 
 

accumulator, flags, registers, instruction pointer, stack, 
stack pointer, files, RAM und ROM 

 
into M. 
 
 
 
The step-function S simulates principally the processor of a 
real computer in single step mode. Since S is a function in a 
mathematical sense, S is as a relation left total and single 
valued. Left total means, that with every state z  a fur-

ther state z  exists, so that ( )  (i. e. the state z  

is generated by S from state z). Single-valued means, that the 
machine is deterministic. 

M

M

∈
∈ ,z z S∈

 
 
 
Because of # , the machine is finite. < ∞M
 
 
 
A Program P  on the machine ( ), , ,m M S R  is per definitionem a se-

quence ( )  in M with ∀ ∈ . 0

0

Pi ∈
∈

M )P
i

(=  0 +1i P Si i
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Then the running-function is described by the following state-
ment: 
 

For all programs P  on the maschine ( ), , ,m M S R  it holds 
 

( ) ( )( ) terminates correctly       00P i i⇔ ∃ ∈ =R P  

 
So we can define for all programs P  on the machine ( ), , ,m M S R , 
which terminates correctly, the result ρ of the program P  
through 
 

( ){ }min :  00
P

i R Pi
ρ =

∈ =
 

 
 
 
Be  the class of all such machines. Ω
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3. The Way Out of The Halting- 
   Problem 
 
Lemma: 
 

 
 

Pre.: 
 

Let ω be a machine of the class . Ω
 

Ass.: 
 

Every program P  on ω terminates correctly or ends up 
in an infinite loop. 
 

 
3.1. Theorem 
 
Ass.: 
 

For every machine ( ), , ,m M S Rω =  of class  it is pos-

sible to construct a machine  of class  

in such a way that the following is true: 

Ω

R( , , ,m M Sω = ) Ω

 
 
 

1. 
 

( )< + + ≤# 1m m m M m  
 

 
 

2. 
 

There exists a programm Q  on  with the following 
properties: 

ω

 
 
 

 
 

1. 
 

Q  terminates correctly 
 

 
 

 
 

2. 
 

For every program P  on  exists one and only 

one program P  on  with the following proper-
ty: 

ω
ω

 

{ } ( ) ( )
( ) ( )

( ) ( )

     m0
1, ,   0

     0

P i i
i m P i

Q i i

 ≤∀ ∈ = 
>

…
m
 

 
 
 

 
 

3. 
 

For every program P  on  it holds: ω
 

P  terminates correctly 
 

 
 

 
 

4. 
 

For every program P  on  it is possible to 

decide by the result of the program P  wether P  
terminates correctly or ends up in an infinite 
loop. 

ω

 
Proof: 
 

constructive sketch (see custos.zip) 
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3.2. What’s about 1.? 

 
First one must realize, that the source-code in 1.3. strictly 
speaking is not a program, but a program-template. This pro-
gram-template has to be compiled with a program on a machine 
as the result. These resulting programs inter alia depend on 
the compiler and the machine, so they can be different. 
 
 
 
Then it is clear: 
 
The way out of the paradoxon in 1. is possible, because the 

“monitoring” program Q  on  from 3.1. only can “monitor” all 

programs on ω and not programs on . 

ω
ω
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4. Time 
 
For a real machine of the class Ω  one can decide by the amount 
of time a program needs for running, wether the program has 
ended up in an infinite loop. 
 
Let ( ), , ,m M S Rω =

:   
 be a machine of the class . We now define 

a mapping T M  through 
Ω

 +→
 

    
( )

( )
 is the time, which the machine 

  
needs, to compute .

T z
z M

S z

ω 
∀ ∈  

 
 

 
At last we define  through τ ∈ +
 

    ( ){ }( )( ): # max :     M t z M t T zτ = ∈ ∃ ∈ =+  

 
Then for every program P  on ω it is valid: 
 

                         (*) 
If  runs longer than , then 

has ended up in an infinite loop.

P Pτ 
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Proof: 
 
We have to show: 
 

    ( )
If the program  terminates correctly,

 program on  
then  runs at most until .

P
P

P
 

∀ ω  τ 
 

 

Let  be a program on , which terminates 

correctly. Because P  terminates correctly, there exists 
 with 

( ) 0

0

P P Mi i
= ∈

∈

0

ω

0i ∈

 

    i i                                (1) ( ){: min :  00 0 R Pi= ∈ }=

} ∅

Pj

    without loss of generality i  10 ≥

     
With 0 it follows:0
The running time of  is 0

i

P

= 
  
 

 
We now define: 
 

    I j                             (2) {: :   0 0 0j i= ∈ < ≠

 
Then we have: 
 

                                          (3) ( )  00j I R Pj∀ ∈ ≠

 
Then for the running time t  of P  the following is 

valid: 
P ∈ +

 

    t                  (4) ( )
0

TP
j I

≤
∈
∑

 
respectively 
 

        ( ) ( ){ }( )# max :     0 t z M t T zP ≤ ∈ ∃ ∈ =+t I         (5) 
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We now define a mapping f I  through :  0 → M

 
    ( ) :0j I f j Pj∀ ∈ =                                 (6) 

 
Because of (5) and (6) we have to show: 
 
    f I  is injective                        (7) :  0 → M

M

 
Proof of (7): 
 
Supp.: f I
 

:  0 →  is not injective 

 
 
 

Because of (1), (2) and (3) there exists k l  with , 0I∈

 
    ( ) ( )  and  k l f k f l< =                           (6) 
 
Because P  is a program on ω, we have: 
 

    ( ) (  0
jj I f j P S Pj∀ ∈ = = )0

)0

0
l

P=

0

=

                      (7) 

 
With (6) and (7) follows: 
 

    S P                                   (8) ( ) (0
k lS P=

 
With this (Cave! (2)) we have also: 
 

    S S                    (9) ( )( ) ( )( )0 0
0

i l i lk P S S P
− −

=

 
respectively 
 

    P S           (10) ( ) ( )0 0
0 00 0

i l k i
P S Pi l k i

− +
= =− +

 

With , (1) and (3) the following is 

true: 

( )0i l k I− + ∈

 

    0 0                   (11) 
0 0

R P R Pi l k i
   

≠ =   − +   
 
This is a contradiction! 
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